Whakaoti mō x
x = \frac{5 \sqrt{17} + 25}{2} \approx 22.807764064
x = \frac{25 - 5 \sqrt{17}}{2} \approx 2.192235936
Graph
Tohaina
Kua tāruatia ki te papatopenga
20\left(x+5\right)+80\left(x-5\right)=4\left(x^{2}-25\right)
Mahia ngā whakarea.
20x+100+80\left(x-5\right)=4\left(x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te x+5.
20x+100+80x-400=4\left(x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 80 ki te x-5.
100x+100-400=4\left(x^{2}-25\right)
Pahekotia te 20x me 80x, ka 100x.
100x-300=4\left(x^{2}-25\right)
Tangohia te 400 i te 100, ka -300.
100x-300=4x^{2}-100
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}-25.
100x-300-4x^{2}=-100
Tangohia te 4x^{2} mai i ngā taha e rua.
100x-300-4x^{2}+100=0
Me tāpiri te 100 ki ngā taha e rua.
100x-200-4x^{2}=0
Tāpirihia te -300 ki te 100, ka -200.
-4x^{2}+100x-200=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{100^{2}-4\left(-4\right)\left(-200\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 100 mō b, me -200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-4\right)\left(-200\right)}}{2\left(-4\right)}
Pūrua 100.
x=\frac{-100±\sqrt{10000+16\left(-200\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-100±\sqrt{10000-3200}}{2\left(-4\right)}
Whakareatia 16 ki te -200.
x=\frac{-100±\sqrt{6800}}{2\left(-4\right)}
Tāpiri 10000 ki te -3200.
x=\frac{-100±20\sqrt{17}}{2\left(-4\right)}
Tuhia te pūtakerua o te 6800.
x=\frac{-100±20\sqrt{17}}{-8}
Whakareatia 2 ki te -4.
x=\frac{20\sqrt{17}-100}{-8}
Nā, me whakaoti te whārite x=\frac{-100±20\sqrt{17}}{-8} ina he tāpiri te ±. Tāpiri -100 ki te 20\sqrt{17}.
x=\frac{25-5\sqrt{17}}{2}
Whakawehe -100+20\sqrt{17} ki te -8.
x=\frac{-20\sqrt{17}-100}{-8}
Nā, me whakaoti te whārite x=\frac{-100±20\sqrt{17}}{-8} ina he tango te ±. Tango 20\sqrt{17} mai i -100.
x=\frac{5\sqrt{17}+25}{2}
Whakawehe -100-20\sqrt{17} ki te -8.
x=\frac{25-5\sqrt{17}}{2} x=\frac{5\sqrt{17}+25}{2}
Kua oti te whārite te whakatau.
20\left(x+5\right)+80\left(x-5\right)=4\left(x^{2}-25\right)
Mahia ngā whakarea.
20x+100+80\left(x-5\right)=4\left(x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te x+5.
20x+100+80x-400=4\left(x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 80 ki te x-5.
100x+100-400=4\left(x^{2}-25\right)
Pahekotia te 20x me 80x, ka 100x.
100x-300=4\left(x^{2}-25\right)
Tangohia te 400 i te 100, ka -300.
100x-300=4x^{2}-100
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}-25.
100x-300-4x^{2}=-100
Tangohia te 4x^{2} mai i ngā taha e rua.
100x-4x^{2}=-100+300
Me tāpiri te 300 ki ngā taha e rua.
100x-4x^{2}=200
Tāpirihia te -100 ki te 300, ka 200.
-4x^{2}+100x=200
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}+100x}{-4}=\frac{200}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{100}{-4}x=\frac{200}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-25x=\frac{200}{-4}
Whakawehe 100 ki te -4.
x^{2}-25x=-50
Whakawehe 200 ki te -4.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-50+\left(-\frac{25}{2}\right)^{2}
Whakawehea te -25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{2}. Nā, tāpiria te pūrua o te -\frac{25}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-25x+\frac{625}{4}=-50+\frac{625}{4}
Pūruatia -\frac{25}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-25x+\frac{625}{4}=\frac{425}{4}
Tāpiri -50 ki te \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{425}{4}
Tauwehea x^{2}-25x+\frac{625}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{425}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{25}{2}=\frac{5\sqrt{17}}{2} x-\frac{25}{2}=-\frac{5\sqrt{17}}{2}
Whakarūnātia.
x=\frac{5\sqrt{17}+25}{2} x=\frac{25-5\sqrt{17}}{2}
Me tāpiri \frac{25}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}