Whakaoti mō y
y=\frac{2}{7}\approx 0.285714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
8y+12=8\left(1-y\right)-5\left(y-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2y+3.
8y+12=8-8y-5\left(y-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 1-y.
8y+12=8-8y-5y+10
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te y-2.
8y+12=8-13y+10
Pahekotia te -8y me -5y, ka -13y.
8y+12=18-13y
Tāpirihia te 8 ki te 10, ka 18.
8y+12+13y=18
Me tāpiri te 13y ki ngā taha e rua.
21y+12=18
Pahekotia te 8y me 13y, ka 21y.
21y=18-12
Tangohia te 12 mai i ngā taha e rua.
21y=6
Tangohia te 12 i te 18, ka 6.
y=\frac{6}{21}
Whakawehea ngā taha e rua ki te 21.
y=\frac{2}{7}
Whakahekea te hautanga \frac{6}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}