Whakaoti mō x
x=\frac{6}{13}\approx 0.461538462
Graph
Tohaina
Kua tāruatia ki te papatopenga
8-4x+1=2x+2-5\left(1-4x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2-x.
9-4x=2x+2-5\left(1-4x\right)
Tāpirihia te 8 ki te 1, ka 9.
9-4x=2x+2-5+20x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 1-4x.
9-4x=2x-3+20x
Tangohia te 5 i te 2, ka -3.
9-4x=22x-3
Pahekotia te 2x me 20x, ka 22x.
9-4x-22x=-3
Tangohia te 22x mai i ngā taha e rua.
9-26x=-3
Pahekotia te -4x me -22x, ka -26x.
-26x=-3-9
Tangohia te 9 mai i ngā taha e rua.
-26x=-12
Tangohia te 9 i te -3, ka -12.
x=\frac{-12}{-26}
Whakawehea ngā taha e rua ki te -26.
x=\frac{6}{13}
Whakahekea te hautanga \frac{-12}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}