Whakaoti mō d
d<-3
Tohaina
Kua tāruatia ki te papatopenga
48d-240>6\left(-34+10d\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 12d-60.
48d-240>-204+60d
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te -34+10d.
48d-240-60d>-204
Tangohia te 60d mai i ngā taha e rua.
-12d-240>-204
Pahekotia te 48d me -60d, ka -12d.
-12d>-204+240
Me tāpiri te 240 ki ngā taha e rua.
-12d>36
Tāpirihia te -204 ki te 240, ka 36.
d<\frac{36}{-12}
Whakawehea ngā taha e rua ki te -12. I te mea he tōraro a -12, ka huri te ahunga koreōrite.
d<-3
Whakawehea te 36 ki te -12, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}