Whakaoti mō x
x=\frac{7}{33}\approx 0.212121212
Graph
Tohaina
Kua tāruatia ki te papatopenga
4-8x-3x=\frac{5}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 1-2x.
4-11x=\frac{5}{3}
Pahekotia te -8x me -3x, ka -11x.
-11x=\frac{5}{3}-4
Tangohia te 4 mai i ngā taha e rua.
-11x=\frac{5}{3}-\frac{12}{3}
Me tahuri te 4 ki te hautau \frac{12}{3}.
-11x=\frac{5-12}{3}
Tā te mea he rite te tauraro o \frac{5}{3} me \frac{12}{3}, me tango rāua mā te tango i ō raua taurunga.
-11x=-\frac{7}{3}
Tangohia te 12 i te 5, ka -7.
x=\frac{-\frac{7}{3}}{-11}
Whakawehea ngā taha e rua ki te -11.
x=\frac{-7}{3\left(-11\right)}
Tuhia te \frac{-\frac{7}{3}}{-11} hei hautanga kotahi.
x=\frac{-7}{-33}
Whakareatia te 3 ki te -11, ka -33.
x=\frac{7}{33}
Ka taea te hautanga \frac{-7}{-33} te whakamāmā ki te \frac{7}{33} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}