Whakaoti mō x
x=\frac{1-\sqrt{17}}{2}\approx -1.561552813
x=-1
x = \frac{\sqrt{17} + 1}{2} \approx 2.561552813
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(1+\frac{1}{x}\right)x=xx^{2}+x\left(-1\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
4\left(1+\frac{1}{x}\right)x=x^{3}+x\left(-1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
4\left(\frac{x}{x}+\frac{1}{x}\right)x=x^{3}+x\left(-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
4\times \frac{x+1}{x}x=x^{3}+x\left(-1\right)
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4\left(x+1\right)}{x}x=x^{3}+x\left(-1\right)
Tuhia te 4\times \frac{x+1}{x} hei hautanga kotahi.
\frac{4\left(x+1\right)x}{x}=x^{3}+x\left(-1\right)
Tuhia te \frac{4\left(x+1\right)}{x}x hei hautanga kotahi.
\frac{\left(4x+4\right)x}{x}=x^{3}+x\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
\frac{4x^{2}+4x}{x}=x^{3}+x\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x+4 ki te x.
\frac{4x^{2}+4x}{x}-x^{3}=x\left(-1\right)
Tangohia te x^{3} mai i ngā taha e rua.
\frac{4x^{2}+4x}{x}-\frac{x^{3}x}{x}=x\left(-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{3} ki te \frac{x}{x}.
\frac{4x^{2}+4x-x^{3}x}{x}=x\left(-1\right)
Tā te mea he rite te tauraro o \frac{4x^{2}+4x}{x} me \frac{x^{3}x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{2}+4x-x^{4}}{x}=x\left(-1\right)
Mahia ngā whakarea i roto o 4x^{2}+4x-x^{3}x.
\frac{4x^{2}+4x-x^{4}}{x}-x\left(-1\right)=0
Tangohia te x\left(-1\right) mai i ngā taha e rua.
\frac{4x^{2}+4x-x^{4}}{x}-\frac{x\left(-1\right)x}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x\left(-1\right) ki te \frac{x}{x}.
\frac{4x^{2}+4x-x^{4}-x\left(-1\right)x}{x}=0
Tā te mea he rite te tauraro o \frac{4x^{2}+4x-x^{4}}{x} me \frac{x\left(-1\right)x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{2}+4x-x^{4}+x^{2}}{x}=0
Mahia ngā whakarea i roto o 4x^{2}+4x-x^{4}-x\left(-1\right)x.
\frac{5x^{2}+4x-x^{4}}{x}=0
Whakakotahitia ngā kupu rite i 4x^{2}+4x-x^{4}+x^{2}.
5x^{2}+4x-x^{4}=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-t^{2}+5t+4=0
Whakakapia te t mō te x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 4}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 5 mō te b, me te 4 mō te c i te ture pūrua.
t=\frac{-5±\sqrt{41}}{-2}
Mahia ngā tātaitai.
t=\frac{5-\sqrt{41}}{2} t=\frac{\sqrt{41}+5}{2}
Whakaotia te whārite t=\frac{-5±\sqrt{41}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{2\sqrt{41}+10}}{2} x=-\frac{\sqrt{2\sqrt{41}+10}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}