Whakaoti mō y
y=\frac{1}{15}\approx 0.066666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\times \frac{3}{5}y+4\times \frac{1}{100}+5y=\frac{8}{15}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te \frac{3}{5}y+\frac{1}{100}.
\frac{4\times 3}{5}y+4\times \frac{1}{100}+5y=\frac{8}{15}
Tuhia te 4\times \frac{3}{5} hei hautanga kotahi.
\frac{12}{5}y+4\times \frac{1}{100}+5y=\frac{8}{15}
Whakareatia te 4 ki te 3, ka 12.
\frac{12}{5}y+\frac{4}{100}+5y=\frac{8}{15}
Whakareatia te 4 ki te \frac{1}{100}, ka \frac{4}{100}.
\frac{12}{5}y+\frac{1}{25}+5y=\frac{8}{15}
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{37}{5}y+\frac{1}{25}=\frac{8}{15}
Pahekotia te \frac{12}{5}y me 5y, ka \frac{37}{5}y.
\frac{37}{5}y=\frac{8}{15}-\frac{1}{25}
Tangohia te \frac{1}{25} mai i ngā taha e rua.
\frac{37}{5}y=\frac{40}{75}-\frac{3}{75}
Ko te maha noa iti rawa atu o 15 me 25 ko 75. Me tahuri \frac{8}{15} me \frac{1}{25} ki te hautau me te tautūnga 75.
\frac{37}{5}y=\frac{40-3}{75}
Tā te mea he rite te tauraro o \frac{40}{75} me \frac{3}{75}, me tango rāua mā te tango i ō raua taurunga.
\frac{37}{5}y=\frac{37}{75}
Tangohia te 3 i te 40, ka 37.
y=\frac{37}{75}\times \frac{5}{37}
Me whakarea ngā taha e rua ki te \frac{5}{37}, te tau utu o \frac{37}{5}.
y=\frac{37\times 5}{75\times 37}
Me whakarea te \frac{37}{75} ki te \frac{5}{37} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=\frac{5}{75}
Me whakakore tahi te 37 i te taurunga me te tauraro.
y=\frac{1}{15}
Whakahekea te hautanga \frac{5}{75} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}