Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\times 14}{3}+17-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Tuhia te 4\times \frac{14}{3} hei hautanga kotahi.
\frac{56}{3}+17-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Whakareatia te 4 ki te 14, ka 56.
\frac{56}{3}+\frac{51}{3}-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Me tahuri te 17 ki te hautau \frac{51}{3}.
\frac{56+51}{3}-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Tā te mea he rite te tauraro o \frac{56}{3} me \frac{51}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{107}{3}-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Tāpirihia te 56 ki te 51, ka 107.
\frac{107}{3}-\frac{8\times 14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Tuhia te 8\times \frac{14}{3} hei hautanga kotahi.
\frac{107}{3}-\frac{112}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Whakareatia te 8 ki te 14, ka 112.
\frac{107-112}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Tā te mea he rite te tauraro o \frac{107}{3} me \frac{112}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}
Tangohia te 112 i te 107, ka -5.
-\frac{5}{3}+\frac{15\times 14}{3}=3-5\times \frac{14}{3}
Tuhia te 15\times \frac{14}{3} hei hautanga kotahi.
-\frac{5}{3}+\frac{210}{3}=3-5\times \frac{14}{3}
Whakareatia te 15 ki te 14, ka 210.
\frac{-5+210}{3}=3-5\times \frac{14}{3}
Tā te mea he rite te tauraro o -\frac{5}{3} me \frac{210}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{205}{3}=3-5\times \frac{14}{3}
Tāpirihia te -5 ki te 210, ka 205.
\frac{205}{3}=3-\frac{5\times 14}{3}
Tuhia te 5\times \frac{14}{3} hei hautanga kotahi.
\frac{205}{3}=3-\frac{70}{3}
Whakareatia te 5 ki te 14, ka 70.
\frac{205}{3}=\frac{9}{3}-\frac{70}{3}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{205}{3}=\frac{9-70}{3}
Tā te mea he rite te tauraro o \frac{9}{3} me \frac{70}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{205}{3}=-\frac{61}{3}
Tangohia te 70 i te 9, ka -61.
\text{false}
Whakatauritea te \frac{205}{3} me te -\frac{61}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}