Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}-\frac{1}{4}=0
Tangohia te \frac{1}{4} mai i ngā taha e rua.
4y^{2}-1=0
Me whakarea ngā taha e rua ki te 4.
\left(2y-1\right)\left(2y+1\right)=0
Whakaarohia te 4y^{2}-1. Tuhia anō te 4y^{2}-1 hei \left(2y\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=\frac{1}{2} y=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 2y-1=0 me te 2y+1=0.
y^{2}=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
y=\frac{1}{2} y=-\frac{1}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}-\frac{1}{4}=0
Tangohia te \frac{1}{4} mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{1}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{1}}{2}
Whakareatia -4 ki te -\frac{1}{4}.
y=\frac{0±1}{2}
Tuhia te pūtakerua o te 1.
y=\frac{1}{2}
Nā, me whakaoti te whārite y=\frac{0±1}{2} ina he tāpiri te ±. Whakawehe 1 ki te 2.
y=-\frac{1}{2}
Nā, me whakaoti te whārite y=\frac{0±1}{2} ina he tango te ±. Whakawehe -1 ki te 2.
y=\frac{1}{2} y=-\frac{1}{2}
Kua oti te whārite te whakatau.