Whakaoti mō x (complex solution)
x=\frac{5+3\sqrt{15}i}{8}\approx 0.625+1.452368755i
x=\frac{-3\sqrt{15}i+5}{8}\approx 0.625-1.452368755i
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-5x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 10}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -5 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4\times 10}}{2\times 4}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-16\times 10}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-5\right)±\sqrt{25-160}}{2\times 4}
Whakareatia -16 ki te 10.
x=\frac{-\left(-5\right)±\sqrt{-135}}{2\times 4}
Tāpiri 25 ki te -160.
x=\frac{-\left(-5\right)±3\sqrt{15}i}{2\times 4}
Tuhia te pūtakerua o te -135.
x=\frac{5±3\sqrt{15}i}{2\times 4}
Ko te tauaro o -5 ko 5.
x=\frac{5±3\sqrt{15}i}{8}
Whakareatia 2 ki te 4.
x=\frac{5+3\sqrt{15}i}{8}
Nā, me whakaoti te whārite x=\frac{5±3\sqrt{15}i}{8} ina he tāpiri te ±. Tāpiri 5 ki te 3i\sqrt{15}.
x=\frac{-3\sqrt{15}i+5}{8}
Nā, me whakaoti te whārite x=\frac{5±3\sqrt{15}i}{8} ina he tango te ±. Tango 3i\sqrt{15} mai i 5.
x=\frac{5+3\sqrt{15}i}{8} x=\frac{-3\sqrt{15}i+5}{8}
Kua oti te whārite te whakatau.
4x^{2}-5x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-5x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
4x^{2}-5x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
\frac{4x^{2}-5x}{4}=-\frac{10}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{5}{4}x=-\frac{10}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{5}{4}x=-\frac{5}{2}
Whakahekea te hautanga \frac{-10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-\frac{5}{2}+\left(-\frac{5}{8}\right)^{2}
Whakawehea te -\frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{8}. Nā, tāpiria te pūrua o te -\frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{5}{2}+\frac{25}{64}
Pūruatia -\frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{135}{64}
Tāpiri -\frac{5}{2} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{8}\right)^{2}=-\frac{135}{64}
Tauwehea x^{2}-\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{135}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{8}=\frac{3\sqrt{15}i}{8} x-\frac{5}{8}=-\frac{3\sqrt{15}i}{8}
Whakarūnātia.
x=\frac{5+3\sqrt{15}i}{8} x=\frac{-3\sqrt{15}i+5}{8}
Me tāpiri \frac{5}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}