Whakaoti mō x
x=-\frac{3}{4}=-0.75
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-21 ab=4\left(-18\right)=-72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Tātaihia te tapeke mō ia takirua.
a=-24 b=3
Ko te otinga te takirua ka hoatu i te tapeke -21.
\left(4x^{2}-24x\right)+\left(3x-18\right)
Tuhia anō te 4x^{2}-21x-18 hei \left(4x^{2}-24x\right)+\left(3x-18\right).
4x\left(x-6\right)+3\left(x-6\right)
Tauwehea te 4x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-6\right)\left(4x+3\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-\frac{3}{4}
Hei kimi otinga whārite, me whakaoti te x-6=0 me te 4x+3=0.
4x^{2}-21x-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 4\left(-18\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -21 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 4\left(-18\right)}}{2\times 4}
Pūrua -21.
x=\frac{-\left(-21\right)±\sqrt{441-16\left(-18\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-21\right)±\sqrt{441+288}}{2\times 4}
Whakareatia -16 ki te -18.
x=\frac{-\left(-21\right)±\sqrt{729}}{2\times 4}
Tāpiri 441 ki te 288.
x=\frac{-\left(-21\right)±27}{2\times 4}
Tuhia te pūtakerua o te 729.
x=\frac{21±27}{2\times 4}
Ko te tauaro o -21 ko 21.
x=\frac{21±27}{8}
Whakareatia 2 ki te 4.
x=\frac{48}{8}
Nā, me whakaoti te whārite x=\frac{21±27}{8} ina he tāpiri te ±. Tāpiri 21 ki te 27.
x=6
Whakawehe 48 ki te 8.
x=-\frac{6}{8}
Nā, me whakaoti te whārite x=\frac{21±27}{8} ina he tango te ±. Tango 27 mai i 21.
x=-\frac{3}{4}
Whakahekea te hautanga \frac{-6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=6 x=-\frac{3}{4}
Kua oti te whārite te whakatau.
4x^{2}-21x-18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-21x-18-\left(-18\right)=-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
4x^{2}-21x=-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
4x^{2}-21x=18
Tango -18 mai i 0.
\frac{4x^{2}-21x}{4}=\frac{18}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{21}{4}x=\frac{18}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{21}{4}x=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=\frac{9}{2}+\left(-\frac{21}{8}\right)^{2}
Whakawehea te -\frac{21}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{21}{8}. Nā, tāpiria te pūrua o te -\frac{21}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{9}{2}+\frac{441}{64}
Pūruatia -\frac{21}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{729}{64}
Tāpiri \frac{9}{2} ki te \frac{441}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{21}{8}\right)^{2}=\frac{729}{64}
Tauwehea x^{2}-\frac{21}{4}x+\frac{441}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{729}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{21}{8}=\frac{27}{8} x-\frac{21}{8}=-\frac{27}{8}
Whakarūnātia.
x=6 x=-\frac{3}{4}
Me tāpiri \frac{21}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}