Tauwehe
4\left(x-25\right)\left(x-21\right)
Aromātai
4\left(x-25\right)\left(x-21\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x^{2}-46x+525\right)
Tauwehea te 4.
a+b=-46 ab=1\times 525=525
Whakaarohia te x^{2}-46x+525. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+525. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-525 -3,-175 -5,-105 -7,-75 -15,-35 -21,-25
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 525.
-1-525=-526 -3-175=-178 -5-105=-110 -7-75=-82 -15-35=-50 -21-25=-46
Tātaihia te tapeke mō ia takirua.
a=-25 b=-21
Ko te otinga te takirua ka hoatu i te tapeke -46.
\left(x^{2}-25x\right)+\left(-21x+525\right)
Tuhia anō te x^{2}-46x+525 hei \left(x^{2}-25x\right)+\left(-21x+525\right).
x\left(x-25\right)-21\left(x-25\right)
Tauwehea te x i te tuatahi me te -21 i te rōpū tuarua.
\left(x-25\right)\left(x-21\right)
Whakatauwehea atu te kīanga pātahi x-25 mā te whakamahi i te āhuatanga tātai tohatoha.
4\left(x-25\right)\left(x-21\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4x^{2}-184x+2100=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-184\right)±\sqrt{\left(-184\right)^{2}-4\times 4\times 2100}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-184\right)±\sqrt{33856-4\times 4\times 2100}}{2\times 4}
Pūrua -184.
x=\frac{-\left(-184\right)±\sqrt{33856-16\times 2100}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-184\right)±\sqrt{33856-33600}}{2\times 4}
Whakareatia -16 ki te 2100.
x=\frac{-\left(-184\right)±\sqrt{256}}{2\times 4}
Tāpiri 33856 ki te -33600.
x=\frac{-\left(-184\right)±16}{2\times 4}
Tuhia te pūtakerua o te 256.
x=\frac{184±16}{2\times 4}
Ko te tauaro o -184 ko 184.
x=\frac{184±16}{8}
Whakareatia 2 ki te 4.
x=\frac{200}{8}
Nā, me whakaoti te whārite x=\frac{184±16}{8} ina he tāpiri te ±. Tāpiri 184 ki te 16.
x=25
Whakawehe 200 ki te 8.
x=\frac{168}{8}
Nā, me whakaoti te whārite x=\frac{184±16}{8} ina he tango te ±. Tango 16 mai i 184.
x=21
Whakawehe 168 ki te 8.
4x^{2}-184x+2100=4\left(x-25\right)\left(x-21\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 25 mō te x_{1} me te 21 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}