Tauwehe
\left(2x-7\right)\left(2x+1\right)
Aromātai
\left(2x-7\right)\left(2x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-12 ab=4\left(-7\right)=-28
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-28 2,-14 4,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
1-28=-27 2-14=-12 4-7=-3
Tātaihia te tapeke mō ia takirua.
a=-14 b=2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(4x^{2}-14x\right)+\left(2x-7\right)
Tuhia anō te 4x^{2}-12x-7 hei \left(4x^{2}-14x\right)+\left(2x-7\right).
2x\left(2x-7\right)+2x-7
Whakatauwehea atu 2x i te 4x^{2}-14x.
\left(2x-7\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
4x^{2}-12x-7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-7\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-7\right)}}{2\times 4}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-7\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{144+112}}{2\times 4}
Whakareatia -16 ki te -7.
x=\frac{-\left(-12\right)±\sqrt{256}}{2\times 4}
Tāpiri 144 ki te 112.
x=\frac{-\left(-12\right)±16}{2\times 4}
Tuhia te pūtakerua o te 256.
x=\frac{12±16}{2\times 4}
Ko te tauaro o -12 ko 12.
x=\frac{12±16}{8}
Whakareatia 2 ki te 4.
x=\frac{28}{8}
Nā, me whakaoti te whārite x=\frac{12±16}{8} ina he tāpiri te ±. Tāpiri 12 ki te 16.
x=\frac{7}{2}
Whakahekea te hautanga \frac{28}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{4}{8}
Nā, me whakaoti te whārite x=\frac{12±16}{8} ina he tango te ±. Tango 16 mai i 12.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4x^{2}-12x-7=4\left(x-\frac{7}{2}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{7}{2} mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
4x^{2}-12x-7=4\left(x-\frac{7}{2}\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4x^{2}-12x-7=4\times \frac{2x-7}{2}\left(x+\frac{1}{2}\right)
Tango \frac{7}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}-12x-7=4\times \frac{2x-7}{2}\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}-12x-7=4\times \frac{\left(2x-7\right)\left(2x+1\right)}{2\times 2}
Whakareatia \frac{2x-7}{2} ki te \frac{2x+1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}-12x-7=4\times \frac{\left(2x-7\right)\left(2x+1\right)}{4}
Whakareatia 2 ki te 2.
4x^{2}-12x-7=\left(2x-7\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}