Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+4x-120=0
Tangohia te 120 mai i ngā taha e rua.
x^{2}+x-30=0
Whakawehea ngā taha e rua ki te 4.
a+b=1 ab=1\left(-30\right)=-30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=-5 b=6
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x^{2}-5x\right)+\left(6x-30\right)
Tuhia anō te x^{2}+x-30 hei \left(x^{2}-5x\right)+\left(6x-30\right).
x\left(x-5\right)+6\left(x-5\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-5\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-6
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+6=0.
4x^{2}+4x=120
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4x^{2}+4x-120=120-120
Me tango 120 mai i ngā taha e rua o te whārite.
4x^{2}+4x-120=0
Mā te tango i te 120 i a ia ake anō ka toe ko te 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-120\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 4 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-120\right)}}{2\times 4}
Pūrua 4.
x=\frac{-4±\sqrt{16-16\left(-120\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-4±\sqrt{16+1920}}{2\times 4}
Whakareatia -16 ki te -120.
x=\frac{-4±\sqrt{1936}}{2\times 4}
Tāpiri 16 ki te 1920.
x=\frac{-4±44}{2\times 4}
Tuhia te pūtakerua o te 1936.
x=\frac{-4±44}{8}
Whakareatia 2 ki te 4.
x=\frac{40}{8}
Nā, me whakaoti te whārite x=\frac{-4±44}{8} ina he tāpiri te ±. Tāpiri -4 ki te 44.
x=5
Whakawehe 40 ki te 8.
x=-\frac{48}{8}
Nā, me whakaoti te whārite x=\frac{-4±44}{8} ina he tango te ±. Tango 44 mai i -4.
x=-6
Whakawehe -48 ki te 8.
x=5 x=-6
Kua oti te whārite te whakatau.
4x^{2}+4x=120
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+4x}{4}=\frac{120}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{4}{4}x=\frac{120}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+x=\frac{120}{4}
Whakawehe 4 ki te 4.
x^{2}+x=30
Whakawehe 120 ki te 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
Tāpiri 30 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
Whakarūnātia.
x=5 x=-6
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.