Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+2x-40=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-40\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{4-4\times 4\left(-40\right)}}{2\times 4}
Pūrua 2.
x=\frac{-2±\sqrt{4-16\left(-40\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-2±\sqrt{4+640}}{2\times 4}
Whakareatia -16 ki te -40.
x=\frac{-2±\sqrt{644}}{2\times 4}
Tāpiri 4 ki te 640.
x=\frac{-2±2\sqrt{161}}{2\times 4}
Tuhia te pūtakerua o te 644.
x=\frac{-2±2\sqrt{161}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{161}-2}{8}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{161}}{8} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{161}.
x=\frac{\sqrt{161}-1}{4}
Whakawehe -2+2\sqrt{161} ki te 8.
x=\frac{-2\sqrt{161}-2}{8}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{161}}{8} ina he tango te ±. Tango 2\sqrt{161} mai i -2.
x=\frac{-\sqrt{161}-1}{4}
Whakawehe -2-2\sqrt{161} ki te 8.
4x^{2}+2x-40=4\left(x-\frac{\sqrt{161}-1}{4}\right)\left(x-\frac{-\sqrt{161}-1}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1+\sqrt{161}}{4} mō te x_{1} me te \frac{-1-\sqrt{161}}{4} mō te x_{2}.