Tauwehe
\left(4x-5\right)\left(x+6\right)
Aromātai
\left(4x-5\right)\left(x+6\right)
Graph
Pātaitai
Polynomial
4 { x }^{ 2 } +19x-30
Tohaina
Kua tāruatia ki te papatopenga
a+b=19 ab=4\left(-30\right)=-120
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4x^{2}+ax+bx-30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-5 b=24
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(4x^{2}-5x\right)+\left(24x-30\right)
Tuhia anō te 4x^{2}+19x-30 hei \left(4x^{2}-5x\right)+\left(24x-30\right).
x\left(4x-5\right)+6\left(4x-5\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(4x-5\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi 4x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
4x^{2}+19x-30=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-19±\sqrt{19^{2}-4\times 4\left(-30\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-19±\sqrt{361-4\times 4\left(-30\right)}}{2\times 4}
Pūrua 19.
x=\frac{-19±\sqrt{361-16\left(-30\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-19±\sqrt{361+480}}{2\times 4}
Whakareatia -16 ki te -30.
x=\frac{-19±\sqrt{841}}{2\times 4}
Tāpiri 361 ki te 480.
x=\frac{-19±29}{2\times 4}
Tuhia te pūtakerua o te 841.
x=\frac{-19±29}{8}
Whakareatia 2 ki te 4.
x=\frac{10}{8}
Nā, me whakaoti te whārite x=\frac{-19±29}{8} ina he tāpiri te ±. Tāpiri -19 ki te 29.
x=\frac{5}{4}
Whakahekea te hautanga \frac{10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{48}{8}
Nā, me whakaoti te whārite x=\frac{-19±29}{8} ina he tango te ±. Tango 29 mai i -19.
x=-6
Whakawehe -48 ki te 8.
4x^{2}+19x-30=4\left(x-\frac{5}{4}\right)\left(x-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{4} mō te x_{1} me te -6 mō te x_{2}.
4x^{2}+19x-30=4\left(x-\frac{5}{4}\right)\left(x+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4x^{2}+19x-30=4\times \frac{4x-5}{4}\left(x+6\right)
Tango \frac{5}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+19x-30=\left(4x-5\right)\left(x+6\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}