Whakaoti mō x
x=-\frac{1}{6}\approx -0.166666667
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x^{2}+2x=0
Whakareatia ngā taha e rua o te whārite ki te 3.
x\left(12x+2\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{6}
Hei kimi otinga whārite, me whakaoti te x=0 me te 12x+2=0.
12x^{2}+2x=0
Whakareatia ngā taha e rua o te whārite ki te 3.
x=\frac{-2±\sqrt{2^{2}}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\times 12}
Tuhia te pūtakerua o te 2^{2}.
x=\frac{-2±2}{24}
Whakareatia 2 ki te 12.
x=\frac{0}{24}
Nā, me whakaoti te whārite x=\frac{-2±2}{24} ina he tāpiri te ±. Tāpiri -2 ki te 2.
x=0
Whakawehe 0 ki te 24.
x=-\frac{4}{24}
Nā, me whakaoti te whārite x=\frac{-2±2}{24} ina he tango te ±. Tango 2 mai i -2.
x=-\frac{1}{6}
Whakahekea te hautanga \frac{-4}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=0 x=-\frac{1}{6}
Kua oti te whārite te whakatau.
12x^{2}+2x=0
Whakareatia ngā taha e rua o te whārite ki te 3.
\frac{12x^{2}+2x}{12}=\frac{0}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{2}{12}x=\frac{0}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+\frac{1}{6}x=\frac{0}{12}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{6}x=0
Whakawehe 0 ki te 12.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\left(\frac{1}{12}\right)^{2}
Whakawehea te \frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{12}. Nā, tāpiria te pūrua o te \frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{144}
Pūruatia \frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{12}\right)^{2}=\frac{1}{144}
Tauwehea x^{2}+\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{12}=\frac{1}{12} x+\frac{1}{12}=-\frac{1}{12}
Whakarūnātia.
x=0 x=-\frac{1}{6}
Me tango \frac{1}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}