Whakaoti mō t
t=-1
t=\frac{1}{4}=0.25
Pātaitai
Polynomial
4 { t }^{ 2 } +3t = 1
Tohaina
Kua tāruatia ki te papatopenga
4t^{2}+3t-1=0
Tangohia te 1 mai i ngā taha e rua.
a+b=3 ab=4\left(-1\right)=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4t^{2}+at+bt-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
a=-1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(4t^{2}-t\right)+\left(4t-1\right)
Tuhia anō te 4t^{2}+3t-1 hei \left(4t^{2}-t\right)+\left(4t-1\right).
t\left(4t-1\right)+4t-1
Whakatauwehea atu t i te 4t^{2}-t.
\left(4t-1\right)\left(t+1\right)
Whakatauwehea atu te kīanga pātahi 4t-1 mā te whakamahi i te āhuatanga tātai tohatoha.
t=\frac{1}{4} t=-1
Hei kimi otinga whārite, me whakaoti te 4t-1=0 me te t+1=0.
4t^{2}+3t=1
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4t^{2}+3t-1=1-1
Me tango 1 mai i ngā taha e rua o te whārite.
4t^{2}+3t-1=0
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
t=\frac{-3±\sqrt{3^{2}-4\times 4\left(-1\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 3 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-3±\sqrt{9-4\times 4\left(-1\right)}}{2\times 4}
Pūrua 3.
t=\frac{-3±\sqrt{9-16\left(-1\right)}}{2\times 4}
Whakareatia -4 ki te 4.
t=\frac{-3±\sqrt{9+16}}{2\times 4}
Whakareatia -16 ki te -1.
t=\frac{-3±\sqrt{25}}{2\times 4}
Tāpiri 9 ki te 16.
t=\frac{-3±5}{2\times 4}
Tuhia te pūtakerua o te 25.
t=\frac{-3±5}{8}
Whakareatia 2 ki te 4.
t=\frac{2}{8}
Nā, me whakaoti te whārite t=\frac{-3±5}{8} ina he tāpiri te ±. Tāpiri -3 ki te 5.
t=\frac{1}{4}
Whakahekea te hautanga \frac{2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t=-\frac{8}{8}
Nā, me whakaoti te whārite t=\frac{-3±5}{8} ina he tango te ±. Tango 5 mai i -3.
t=-1
Whakawehe -8 ki te 8.
t=\frac{1}{4} t=-1
Kua oti te whārite te whakatau.
4t^{2}+3t=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4t^{2}+3t}{4}=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
t^{2}+\frac{3}{4}t=\frac{1}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
t^{2}+\frac{3}{4}t+\left(\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(\frac{3}{8}\right)^{2}
Whakawehea te \frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{8}. Nā, tāpiria te pūrua o te \frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{3}{4}t+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+\frac{3}{4}t+\frac{9}{64}=\frac{25}{64}
Tāpiri \frac{1}{4} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t+\frac{3}{8}\right)^{2}=\frac{25}{64}
Tauwehea te t^{2}+\frac{3}{4}t+\frac{9}{64}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{3}{8}=\frac{5}{8} t+\frac{3}{8}=-\frac{5}{8}
Whakarūnātia.
t=\frac{1}{4} t=-1
Me tango \frac{3}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}