Tauwehe
\left(a-5\right)\left(4a+1\right)
Aromātai
\left(a-5\right)\left(4a+1\right)
Pātaitai
Polynomial
4 { a }^{ 2 } -19a-5
Tohaina
Kua tāruatia ki te papatopenga
p+q=-19 pq=4\left(-5\right)=-20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4a^{2}+pa+qa-5. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-20 2,-10 4,-5
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
1-20=-19 2-10=-8 4-5=-1
Tātaihia te tapeke mō ia takirua.
p=-20 q=1
Ko te otinga te takirua ka hoatu i te tapeke -19.
\left(4a^{2}-20a\right)+\left(a-5\right)
Tuhia anō te 4a^{2}-19a-5 hei \left(4a^{2}-20a\right)+\left(a-5\right).
4a\left(a-5\right)+a-5
Whakatauwehea atu 4a i te 4a^{2}-20a.
\left(a-5\right)\left(4a+1\right)
Whakatauwehea atu te kīanga pātahi a-5 mā te whakamahi i te āhuatanga tātai tohatoha.
4a^{2}-19a-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-19\right)±\sqrt{361-4\times 4\left(-5\right)}}{2\times 4}
Pūrua -19.
a=\frac{-\left(-19\right)±\sqrt{361-16\left(-5\right)}}{2\times 4}
Whakareatia -4 ki te 4.
a=\frac{-\left(-19\right)±\sqrt{361+80}}{2\times 4}
Whakareatia -16 ki te -5.
a=\frac{-\left(-19\right)±\sqrt{441}}{2\times 4}
Tāpiri 361 ki te 80.
a=\frac{-\left(-19\right)±21}{2\times 4}
Tuhia te pūtakerua o te 441.
a=\frac{19±21}{2\times 4}
Ko te tauaro o -19 ko 19.
a=\frac{19±21}{8}
Whakareatia 2 ki te 4.
a=\frac{40}{8}
Nā, me whakaoti te whārite a=\frac{19±21}{8} ina he tāpiri te ±. Tāpiri 19 ki te 21.
a=5
Whakawehe 40 ki te 8.
a=-\frac{2}{8}
Nā, me whakaoti te whārite a=\frac{19±21}{8} ina he tango te ±. Tango 21 mai i 19.
a=-\frac{1}{4}
Whakahekea te hautanga \frac{-2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
4a^{2}-19a-5=4\left(a-5\right)\left(a-\left(-\frac{1}{4}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te -\frac{1}{4} mō te x_{2}.
4a^{2}-19a-5=4\left(a-5\right)\left(a+\frac{1}{4}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4a^{2}-19a-5=4\left(a-5\right)\times \frac{4a+1}{4}
Tāpiri \frac{1}{4} ki te a mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4a^{2}-19a-5=\left(a-5\right)\left(4a+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}