Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
4\times \left(3\left(1-3\right)\right)^{2}-\left(-10-2\right)^{2}
Tangohia te 2 i te 5, ka 3.
4\times \left(3\left(-2\right)\right)^{2}-\left(-10-2\right)^{2}
Tangohia te 3 i te 1, ka -2.
4\left(-6\right)^{2}-\left(-10-2\right)^{2}
Whakareatia te 3 ki te -2, ka -6.
4\times 36-\left(-10-2\right)^{2}
Tātaihia te -6 mā te pū o 2, kia riro ko 36.
144-\left(-10-2\right)^{2}
Whakareatia te 4 ki te 36, ka 144.
144-\left(-12\right)^{2}
Tangohia te 2 i te -10, ka -12.
144-144
Tātaihia te -12 mā te pū o 2, kia riro ko 144.
0
Tangohia te 144 i te 144, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}