Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
4\left(\frac{3}{28}+\frac{21}{28}\right)=3\left(\frac{3}{4}-\frac{3}{28}\right)
Ko te maha noa iti rawa atu o 28 me 4 ko 28. Me tahuri \frac{3}{28} me \frac{3}{4} ki te hautau me te tautūnga 28.
4\times \frac{3+21}{28}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Tā te mea he rite te tauraro o \frac{3}{28} me \frac{21}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
4\times \frac{24}{28}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Tāpirihia te 3 ki te 21, ka 24.
4\times \frac{6}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Whakahekea te hautanga \frac{24}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{4\times 6}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Tuhia te 4\times \frac{6}{7} hei hautanga kotahi.
\frac{24}{7}=3\left(\frac{3}{4}-\frac{3}{28}\right)
Whakareatia te 4 ki te 6, ka 24.
\frac{24}{7}=3\left(\frac{21}{28}-\frac{3}{28}\right)
Ko te maha noa iti rawa atu o 4 me 28 ko 28. Me tahuri \frac{3}{4} me \frac{3}{28} ki te hautau me te tautūnga 28.
\frac{24}{7}=3\times \frac{21-3}{28}
Tā te mea he rite te tauraro o \frac{21}{28} me \frac{3}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{24}{7}=3\times \frac{18}{28}
Tangohia te 3 i te 21, ka 18.
\frac{24}{7}=3\times \frac{9}{14}
Whakahekea te hautanga \frac{18}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{24}{7}=\frac{3\times 9}{14}
Tuhia te 3\times \frac{9}{14} hei hautanga kotahi.
\frac{24}{7}=\frac{27}{14}
Whakareatia te 3 ki te 9, ka 27.
\frac{48}{14}=\frac{27}{14}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{24}{7} me \frac{27}{14} ki te hautau me te tautūnga 14.
\text{false}
Whakatauritea te \frac{48}{14} me te \frac{27}{14}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}