Whakaoti mō a
a = \frac{9}{4} = 2\frac{1}{4} = 2.25
Tohaina
Kua tāruatia ki te papatopenga
\left(4\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4^{2}\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Whakarohaina te \left(4\sqrt{a}\right)^{2}.
16\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16a=\left(\sqrt{4a+27}\right)^{2}
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
16a=4a+27
Tātaihia te \sqrt{4a+27} mā te pū o 2, kia riro ko 4a+27.
16a-4a=27
Tangohia te 4a mai i ngā taha e rua.
12a=27
Pahekotia te 16a me -4a, ka 12a.
a=\frac{27}{12}
Whakawehea ngā taha e rua ki te 12.
a=\frac{9}{4}
Whakahekea te hautanga \frac{27}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
4\sqrt{\frac{9}{4}}=\sqrt{4\times \frac{9}{4}+27}
Whakakapia te \frac{9}{4} mō te a i te whārite 4\sqrt{a}=\sqrt{4a+27}.
6=6
Whakarūnātia. Ko te uara a=\frac{9}{4} kua ngata te whārite.
a=\frac{9}{4}
Ko te whārite 4\sqrt{a}=\sqrt{4a+27} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}