Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(4\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4^{2}\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Whakarohaina te \left(4\sqrt{a}\right)^{2}.
16\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16a=\left(\sqrt{4a+27}\right)^{2}
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
16a=4a+27
Tātaihia te \sqrt{4a+27} mā te pū o 2, kia riro ko 4a+27.
16a-4a=27
Tangohia te 4a mai i ngā taha e rua.
12a=27
Pahekotia te 16a me -4a, ka 12a.
a=\frac{27}{12}
Whakawehea ngā taha e rua ki te 12.
a=\frac{9}{4}
Whakahekea te hautanga \frac{27}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
4\sqrt{\frac{9}{4}}=\sqrt{4\times \frac{9}{4}+27}
Whakakapia te \frac{9}{4} mō te a i te whārite 4\sqrt{a}=\sqrt{4a+27}.
6=6
Whakarūnātia. Ko te uara a=\frac{9}{4} kua ngata te whārite.
a=\frac{9}{4}
Ko te whārite 4\sqrt{a}=\sqrt{4a+27} he rongoā ahurei.