Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\sqrt{3}-6-\frac{4\sqrt{3}+6}{\left(4\sqrt{3}-6\right)\left(4\sqrt{3}+6\right)}-1
Whakangāwaritia te tauraro o \frac{1}{4\sqrt{3}-6} mā te whakarea i te taurunga me te tauraro ki te 4\sqrt{3}+6.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{\left(4\sqrt{3}\right)^{2}-6^{2}}-1
Whakaarohia te \left(4\sqrt{3}-6\right)\left(4\sqrt{3}+6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{4^{2}\left(\sqrt{3}\right)^{2}-6^{2}}-1
Whakarohaina te \left(4\sqrt{3}\right)^{2}.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{16\left(\sqrt{3}\right)^{2}-6^{2}}-1
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{16\times 3-6^{2}}-1
Ko te pūrua o \sqrt{3} ko 3.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{48-6^{2}}-1
Whakareatia te 16 ki te 3, ka 48.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{48-36}-1
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
4\sqrt{3}-6-\frac{4\sqrt{3}+6}{12}-1
Tangohia te 36 i te 48, ka 12.
4\sqrt{3}-7-\frac{4\sqrt{3}+6}{12}
Tangohia te 1 i te -6, ka -7.
\frac{12\left(4\sqrt{3}-7\right)}{12}-\frac{4\sqrt{3}+6}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4\sqrt{3}-7 ki te \frac{12}{12}.
\frac{12\left(4\sqrt{3}-7\right)-\left(4\sqrt{3}+6\right)}{12}
Tā te mea he rite te tauraro o \frac{12\left(4\sqrt{3}-7\right)}{12} me \frac{4\sqrt{3}+6}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{48\sqrt{3}-84-4\sqrt{3}-6}{12}
Mahia ngā whakarea i roto o 12\left(4\sqrt{3}-7\right)-\left(4\sqrt{3}+6\right).
\frac{44\sqrt{3}-90}{12}
Mahia ngā tātaitai i roto o 48\sqrt{3}-84-4\sqrt{3}-6.