Aromātai
30u
Kimi Pārōnaki e ai ki u
30
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
4 \sqrt { \frac { 15 } { 8 } } u \frac { 1 } { 5 } \sqrt { 750 }
Tohaina
Kua tāruatia ki te papatopenga
4\times \frac{\sqrt{15}}{\sqrt{8}}u\times \frac{1}{5}\sqrt{750}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{15}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{15}}{\sqrt{8}}.
4\times \frac{\sqrt{15}}{2\sqrt{2}}u\times \frac{1}{5}\sqrt{750}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
4\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}u\times \frac{1}{5}\sqrt{750}
Whakangāwaritia te tauraro o \frac{\sqrt{15}}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
4\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}u\times \frac{1}{5}\sqrt{750}
Ko te pūrua o \sqrt{2} ko 2.
4\times \frac{\sqrt{30}}{2\times 2}u\times \frac{1}{5}\sqrt{750}
Hei whakarea \sqrt{15} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
4\times \frac{\sqrt{30}}{4}u\times \frac{1}{5}\sqrt{750}
Whakareatia te 2 ki te 2, ka 4.
\frac{4}{5}\times \frac{\sqrt{30}}{4}u\sqrt{750}
Whakareatia te 4 ki te \frac{1}{5}, ka \frac{4}{5}.
\frac{4}{5}\times \frac{\sqrt{30}}{4}u\times 5\sqrt{30}
Tauwehea te 750=5^{2}\times 30. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 30} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{30}. Tuhia te pūtakerua o te 5^{2}.
4\times \frac{\sqrt{30}}{4}u\sqrt{30}
Me whakakore te 5 me te 5.
\sqrt{30}u\sqrt{30}
Me whakakore te 4 me te 4.
30u
Whakareatia te \sqrt{30} ki te \sqrt{30}, ka 30.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}}{\sqrt{8}}u\times \frac{1}{5}\sqrt{750})
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{15}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{15}}{\sqrt{8}}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}}{2\sqrt{2}}u\times \frac{1}{5}\sqrt{750})
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}u\times \frac{1}{5}\sqrt{750})
Whakangāwaritia te tauraro o \frac{\sqrt{15}}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}u\times \frac{1}{5}\sqrt{750})
Ko te pūrua o \sqrt{2} ko 2.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{2\times 2}u\times \frac{1}{5}\sqrt{750})
Hei whakarea \sqrt{15} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{4}u\times \frac{1}{5}\sqrt{750})
Whakareatia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{4}{5}\times \frac{\sqrt{30}}{4}u\sqrt{750})
Whakareatia te 4 ki te \frac{1}{5}, ka \frac{4}{5}.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{4}{5}\times \frac{\sqrt{30}}{4}u\times 5\sqrt{30})
Tauwehea te 750=5^{2}\times 30. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 30} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{30}. Tuhia te pūtakerua o te 5^{2}.
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{4}u\sqrt{30})
Me whakakore te 5 me te 5.
\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt{30}u\sqrt{30})
Me whakakore te 4 me te 4.
\frac{\mathrm{d}}{\mathrm{d}u}(30u)
Whakareatia te \sqrt{30} ki te \sqrt{30}, ka 30.
30u^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
30u^{0}
Tango 1 mai i 1.
30\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
30
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}