Whakaoti mō θ
\theta =\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =\frac{1}{2}\pi +\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
\theta =\pi +2n_{4}\pi +arcSin(\frac{1}{6}\left(18+\left(-6\right)\times 6^{\frac{1}{2}}CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\right)^{\frac{1}{2}})\text{, }n_{4}\in \mathrm{Z}
\theta =\left(-1\right)arcSin(\frac{1}{6}\left(18+\left(-6\right)\times 6^{\frac{1}{2}}CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\right)^{\frac{1}{2}})+2n_{3}\pi +2\pi \text{, }n_{3}\in \mathrm{Z}
\theta =\pi +2\pi n_{10}+\left(-1\right)arcSin(\frac{1}{6}\left(18+\left(-6\right)\times 6^{\frac{1}{2}}CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\right)^{\frac{1}{2}})\text{, }n_{10}\in \mathrm{Z}
\theta =arcSin(\frac{1}{6}\left(18+\left(-6\right)\times 6^{\frac{1}{2}}CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\right)^{\frac{1}{2}})+2\pi n_{9}\text{, }n_{9}\in \mathrm{Z}
\theta =\pi +arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+9SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{11}\pi \text{, }n_{11}\in \mathrm{Z}
\theta =\left(-1\right)arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+9SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{12}\pi \text{, }n_{12}\in \mathrm{Z}
\theta =\pi +\left(-1\right)arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+9SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{13}\pi \text{, }n_{13}\in \mathrm{Z}
\theta =arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+9SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{14}\pi \text{, }n_{14}\in \mathrm{Z}
\theta =\pi +arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+\left(-9\right)SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{15}\pi \text{, }n_{15}\in \mathrm{Z}
\theta =\left(-1\right)arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+\left(-9\right)SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{16}\pi \text{, }n_{16}\in \mathrm{Z}
\theta =\pi +\left(-1\right)arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+\left(-9\right)SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{17}\pi \text{, }n_{17}\in \mathrm{Z}
\theta =arcSin(\frac{1}{6}\left(18+3CosI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 6^{\frac{1}{2}}+\left(-9\right)SinI(\frac{1}{3}ArcCosI(\frac{3}{16}\times 6^{\frac{1}{2}}))\times 2^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{18}\pi \text{, }n_{18}\in \mathrm{Z}
Graph
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
4 \sin ( 4 \theta ) 2 \cos ( 4 \theta ) = 2 \sin ( 2 \theta )
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}