Whakaoti mō x
x=4
x = \frac{14}{5} = 2\frac{4}{5} = 2.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x-12\right)\left(5x-19\right)=4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-3.
20x^{2}-136x+228=4
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-12 ki te 5x-19 ka whakakotahi i ngā kupu rite.
20x^{2}-136x+228-4=0
Tangohia te 4 mai i ngā taha e rua.
20x^{2}-136x+224=0
Tangohia te 4 i te 228, ka 224.
x=\frac{-\left(-136\right)±\sqrt{\left(-136\right)^{2}-4\times 20\times 224}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, -136 mō b, me 224 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-136\right)±\sqrt{18496-4\times 20\times 224}}{2\times 20}
Pūrua -136.
x=\frac{-\left(-136\right)±\sqrt{18496-80\times 224}}{2\times 20}
Whakareatia -4 ki te 20.
x=\frac{-\left(-136\right)±\sqrt{18496-17920}}{2\times 20}
Whakareatia -80 ki te 224.
x=\frac{-\left(-136\right)±\sqrt{576}}{2\times 20}
Tāpiri 18496 ki te -17920.
x=\frac{-\left(-136\right)±24}{2\times 20}
Tuhia te pūtakerua o te 576.
x=\frac{136±24}{2\times 20}
Ko te tauaro o -136 ko 136.
x=\frac{136±24}{40}
Whakareatia 2 ki te 20.
x=\frac{160}{40}
Nā, me whakaoti te whārite x=\frac{136±24}{40} ina he tāpiri te ±. Tāpiri 136 ki te 24.
x=4
Whakawehe 160 ki te 40.
x=\frac{112}{40}
Nā, me whakaoti te whārite x=\frac{136±24}{40} ina he tango te ±. Tango 24 mai i 136.
x=\frac{14}{5}
Whakahekea te hautanga \frac{112}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=4 x=\frac{14}{5}
Kua oti te whārite te whakatau.
\left(4x-12\right)\left(5x-19\right)=4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-3.
20x^{2}-136x+228=4
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-12 ki te 5x-19 ka whakakotahi i ngā kupu rite.
20x^{2}-136x=4-228
Tangohia te 228 mai i ngā taha e rua.
20x^{2}-136x=-224
Tangohia te 228 i te 4, ka -224.
\frac{20x^{2}-136x}{20}=-\frac{224}{20}
Whakawehea ngā taha e rua ki te 20.
x^{2}+\left(-\frac{136}{20}\right)x=-\frac{224}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
x^{2}-\frac{34}{5}x=-\frac{224}{20}
Whakahekea te hautanga \frac{-136}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{34}{5}x=-\frac{56}{5}
Whakahekea te hautanga \frac{-224}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{34}{5}x+\left(-\frac{17}{5}\right)^{2}=-\frac{56}{5}+\left(-\frac{17}{5}\right)^{2}
Whakawehea te -\frac{34}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{17}{5}. Nā, tāpiria te pūrua o te -\frac{17}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{34}{5}x+\frac{289}{25}=-\frac{56}{5}+\frac{289}{25}
Pūruatia -\frac{17}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{34}{5}x+\frac{289}{25}=\frac{9}{25}
Tāpiri -\frac{56}{5} ki te \frac{289}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{17}{5}\right)^{2}=\frac{9}{25}
Tauwehea x^{2}-\frac{34}{5}x+\frac{289}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{17}{5}=\frac{3}{5} x-\frac{17}{5}=-\frac{3}{5}
Whakarūnātia.
x=4 x=\frac{14}{5}
Me tāpiri \frac{17}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}