Aromātai
\frac{1943}{105}\approx 18.504761905
Tauwehe
\frac{29 \cdot 67}{3 \cdot 5 \cdot 7} = 18\frac{53}{105} = 18.504761904761907
Tohaina
Kua tāruatia ki te papatopenga
\frac{28+4}{7}+\frac{7\times 3+1}{3}+\frac{33}{5}
Whakareatia te 4 ki te 7, ka 28.
\frac{32}{7}+\frac{7\times 3+1}{3}+\frac{33}{5}
Tāpirihia te 28 ki te 4, ka 32.
\frac{32}{7}+\frac{21+1}{3}+\frac{33}{5}
Whakareatia te 7 ki te 3, ka 21.
\frac{32}{7}+\frac{22}{3}+\frac{33}{5}
Tāpirihia te 21 ki te 1, ka 22.
\frac{96}{21}+\frac{154}{21}+\frac{33}{5}
Ko te maha noa iti rawa atu o 7 me 3 ko 21. Me tahuri \frac{32}{7} me \frac{22}{3} ki te hautau me te tautūnga 21.
\frac{96+154}{21}+\frac{33}{5}
Tā te mea he rite te tauraro o \frac{96}{21} me \frac{154}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{250}{21}+\frac{33}{5}
Tāpirihia te 96 ki te 154, ka 250.
\frac{1250}{105}+\frac{693}{105}
Ko te maha noa iti rawa atu o 21 me 5 ko 105. Me tahuri \frac{250}{21} me \frac{33}{5} ki te hautau me te tautūnga 105.
\frac{1250+693}{105}
Tā te mea he rite te tauraro o \frac{1250}{105} me \frac{693}{105}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1943}{105}
Tāpirihia te 1250 ki te 693, ka 1943.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}