Aromātai
\frac{104}{5}=20.8
Tauwehe
\frac{2 ^ {3} \cdot 13}{5} = 20\frac{4}{5} = 20.8
Tohaina
Kua tāruatia ki te papatopenga
\frac{20+4}{5}\times \frac{4\times 3+1}{3}
Whakareatia te 4 ki te 5, ka 20.
\frac{24}{5}\times \frac{4\times 3+1}{3}
Tāpirihia te 20 ki te 4, ka 24.
\frac{24}{5}\times \frac{12+1}{3}
Whakareatia te 4 ki te 3, ka 12.
\frac{24}{5}\times \frac{13}{3}
Tāpirihia te 12 ki te 1, ka 13.
\frac{24\times 13}{5\times 3}
Me whakarea te \frac{24}{5} ki te \frac{13}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{312}{15}
Mahia ngā whakarea i roto i te hautanga \frac{24\times 13}{5\times 3}.
\frac{104}{5}
Whakahekea te hautanga \frac{312}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}