Aromātai
\frac{1001}{25}=40.04
Tauwehe
\frac{7 \cdot 11 \cdot 13}{5 ^ {2}} = 40\frac{1}{25} = 40.04
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(4\times 5+4\right)\times 5}{5\times 3}\times 5+\frac{4}{5}\times \frac{3}{10}-\frac{1}{5}
Whakawehe \frac{4\times 5+4}{5} ki te \frac{3}{5} mā te whakarea \frac{4\times 5+4}{5} ki te tau huripoki o \frac{3}{5}.
\frac{4+4\times 5}{3}\times 5+\frac{4}{5}\times \frac{3}{10}-\frac{1}{5}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{4+20}{3}\times 5+\frac{4}{5}\times \frac{3}{10}-\frac{1}{5}
Whakareatia te 4 ki te 5, ka 20.
\frac{24}{3}\times 5+\frac{4}{5}\times \frac{3}{10}-\frac{1}{5}
Tāpirihia te 4 ki te 20, ka 24.
8\times 5+\frac{4}{5}\times \frac{3}{10}-\frac{1}{5}
Whakawehea te 24 ki te 3, kia riro ko 8.
40+\frac{4}{5}\times \frac{3}{10}-\frac{1}{5}
Whakareatia te 8 ki te 5, ka 40.
40+\frac{4\times 3}{5\times 10}-\frac{1}{5}
Me whakarea te \frac{4}{5} ki te \frac{3}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
40+\frac{12}{50}-\frac{1}{5}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 3}{5\times 10}.
40+\frac{6}{25}-\frac{1}{5}
Whakahekea te hautanga \frac{12}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1000}{25}+\frac{6}{25}-\frac{1}{5}
Me tahuri te 40 ki te hautau \frac{1000}{25}.
\frac{1000+6}{25}-\frac{1}{5}
Tā te mea he rite te tauraro o \frac{1000}{25} me \frac{6}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1006}{25}-\frac{1}{5}
Tāpirihia te 1000 ki te 6, ka 1006.
\frac{1006}{25}-\frac{5}{25}
Ko te maha noa iti rawa atu o 25 me 5 ko 25. Me tahuri \frac{1006}{25} me \frac{1}{5} ki te hautau me te tautūnga 25.
\frac{1006-5}{25}
Tā te mea he rite te tauraro o \frac{1006}{25} me \frac{5}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{1001}{25}
Tangohia te 5 i te 1006, ka 1001.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}