Aromātai
\frac{83}{35}\approx 2.371428571
Tauwehe
\frac{83}{5 \cdot 7} = 2\frac{13}{35} = 2.3714285714285714
Tohaina
Kua tāruatia ki te papatopenga
\frac{140+22}{35}-\left(\frac{2\times 35+11}{35}-\frac{2}{35}\right)
Whakareatia te 4 ki te 35, ka 140.
\frac{162}{35}-\left(\frac{2\times 35+11}{35}-\frac{2}{35}\right)
Tāpirihia te 140 ki te 22, ka 162.
\frac{162}{35}-\left(\frac{70+11}{35}-\frac{2}{35}\right)
Whakareatia te 2 ki te 35, ka 70.
\frac{162}{35}-\left(\frac{81}{35}-\frac{2}{35}\right)
Tāpirihia te 70 ki te 11, ka 81.
\frac{162}{35}-\frac{81-2}{35}
Tā te mea he rite te tauraro o \frac{81}{35} me \frac{2}{35}, me tango rāua mā te tango i ō raua taurunga.
\frac{162}{35}-\frac{79}{35}
Tangohia te 2 i te 81, ka 79.
\frac{162-79}{35}
Tā te mea he rite te tauraro o \frac{162}{35} me \frac{79}{35}, me tango rāua mā te tango i ō raua taurunga.
\frac{83}{35}
Tangohia te 79 i te 162, ka 83.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}