Aromātai
-\frac{10}{3}\approx -3.333333333
Tauwehe
-\frac{10}{3} = -3\frac{1}{3} = -3.3333333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4\times 2+1}{2}\left(-\frac{1\times 3+2}{3}\right)\times 4}{3\times 3}
Whakawehe \frac{\frac{4\times 2+1}{2}\left(-\frac{1\times 3+2}{3}\right)}{3} ki te \frac{3}{4} mā te whakarea \frac{\frac{4\times 2+1}{2}\left(-\frac{1\times 3+2}{3}\right)}{3} ki te tau huripoki o \frac{3}{4}.
\frac{\frac{8+1}{2}\left(-\frac{1\times 3+2}{3}\right)\times 4}{3\times 3}
Whakareatia te 4 ki te 2, ka 8.
\frac{\frac{9}{2}\left(-\frac{1\times 3+2}{3}\right)\times 4}{3\times 3}
Tāpirihia te 8 ki te 1, ka 9.
\frac{\frac{9}{2}\left(-\frac{3+2}{3}\right)\times 4}{3\times 3}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{9}{2}\left(-\frac{5}{3}\right)\times 4}{3\times 3}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{9\left(-5\right)}{2\times 3}\times 4}{3\times 3}
Me whakarea te \frac{9}{2} ki te -\frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-45}{6}\times 4}{3\times 3}
Mahia ngā whakarea i roto i te hautanga \frac{9\left(-5\right)}{2\times 3}.
\frac{-\frac{15}{2}\times 4}{3\times 3}
Whakahekea te hautanga \frac{-45}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{-15\times 4}{2}}{3\times 3}
Tuhia te -\frac{15}{2}\times 4 hei hautanga kotahi.
\frac{\frac{-60}{2}}{3\times 3}
Whakareatia te -15 ki te 4, ka -60.
\frac{-30}{3\times 3}
Whakawehea te -60 ki te 2, kia riro ko -30.
\frac{-30}{9}
Whakareatia te 3 ki te 3, ka 9.
-\frac{10}{3}
Whakahekea te hautanga \frac{-30}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}