Whakaoti mō p
p=0.0625
Tohaina
Kua tāruatia ki te papatopenga
20\left(2p+1\right)-8.5=14
Whakareatia te 4 ki te 5, ka 20.
40p+20-8.5=14
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te 2p+1.
40p+11.5=14
Tangohia te 8.5 i te 20, ka 11.5.
40p=14-11.5
Tangohia te 11.5 mai i ngā taha e rua.
40p=2.5
Tangohia te 11.5 i te 14, ka 2.5.
p=\frac{2.5}{40}
Whakawehea ngā taha e rua ki te 40.
p=\frac{25}{400}
Whakarohaina te \frac{2.5}{40} mā te whakarea i te taurunga me te tauraro ki te 10.
p=\frac{1}{16}
Whakahekea te hautanga \frac{25}{400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}