4 \% x \times 85=
Aromātai
\frac{17x}{5}
Kimi Pārōnaki e ai ki x
\frac{17}{5} = 3\frac{2}{5} = 3.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{25}x\times 85
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{85}{25}x
Whakareatia te \frac{1}{25} ki te 85, ka \frac{85}{25}.
\frac{17}{5}x
Whakahekea te hautanga \frac{85}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{25}x\times 85)
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{85}{25}x)
Whakareatia te \frac{1}{25} ki te 85, ka \frac{85}{25}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{17}{5}x)
Whakahekea te hautanga \frac{85}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{17}{5}x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{17}{5}x^{0}
Tango 1 mai i 1.
\frac{17}{5}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{17}{5}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}