Whakaoti mō x (complex solution)
x=\left(-\frac{1}{4}\right)\left(\left(-8i\right)\pi n_{5}+4\pi ^{2}n_{5}^{2}\ln(2)^{-1}+\left(-9\right)\ln(2)\right)\left(\ln(2)+i\pi n_{5}\right)^{-1}\text{, }n_{5}\in \mathrm{Z}\text{, }arg(x-2+\left(-2i\right)\pi \ln(2)^{-1}n_{5})<\pi
x=\left(-1\right)\left(\left(-2i\right)\pi n_{4}+2\pi ^{2}n_{4}^{2}\ln(2)^{-1}+\left(-3\right)\ln(2)\right)\left(\ln(2)+2i\pi n_{4}\right)^{-1}\text{, }n_{4}\in \mathrm{Z}\text{, }arg(x+\left(-2i\right)n_{4}\pi \ln(2)^{-1}-1)<\pi
Whakaoti mō x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}