Whakaoti mō x
x = \frac{\sqrt{79} + 7}{4} \approx 3.972048604
x=\frac{7-\sqrt{79}}{4}\approx -0.472048604
Graph
Tohaina
Kua tāruatia ki te papatopenga
16=x^{2}+\left(\frac{7-2x}{2}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16=x^{2}+\frac{\left(7-2x\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{7-2x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
16=\frac{x^{2}\times 2^{2}}{2^{2}}+\frac{\left(7-2x\right)^{2}}{2^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2} ki te \frac{2^{2}}{2^{2}}.
16=\frac{x^{2}\times 2^{2}+\left(7-2x\right)^{2}}{2^{2}}
Tā te mea he rite te tauraro o \frac{x^{2}\times 2^{2}}{2^{2}} me \frac{\left(7-2x\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
16=\frac{4x^{2}+49-28x+4x^{2}}{2^{2}}
Mahia ngā whakarea i roto o x^{2}\times 2^{2}+\left(7-2x\right)^{2}.
16=\frac{8x^{2}+49-28x}{2^{2}}
Whakakotahitia ngā kupu rite i 4x^{2}+49-28x+4x^{2}.
16=\frac{8x^{2}+49-28x}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
16=2x^{2}+\frac{49}{4}-7x
Whakawehea ia wā o 8x^{2}+49-28x ki te 4, kia riro ko 2x^{2}+\frac{49}{4}-7x.
2x^{2}+\frac{49}{4}-7x=16
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+\frac{49}{4}-7x-16=0
Tangohia te 16 mai i ngā taha e rua.
2x^{2}-\frac{15}{4}-7x=0
Tangohia te 16 i te \frac{49}{4}, ka -\frac{15}{4}.
2x^{2}-7x-\frac{15}{4}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-\frac{15}{4}\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -7 mō b, me -\frac{15}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-\frac{15}{4}\right)}}{2\times 2}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-\frac{15}{4}\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-7\right)±\sqrt{49+30}}{2\times 2}
Whakareatia -8 ki te -\frac{15}{4}.
x=\frac{-\left(-7\right)±\sqrt{79}}{2\times 2}
Tāpiri 49 ki te 30.
x=\frac{7±\sqrt{79}}{2\times 2}
Ko te tauaro o -7 ko 7.
x=\frac{7±\sqrt{79}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{79}+7}{4}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{79}}{4} ina he tāpiri te ±. Tāpiri 7 ki te \sqrt{79}.
x=\frac{7-\sqrt{79}}{4}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{79}}{4} ina he tango te ±. Tango \sqrt{79} mai i 7.
x=\frac{\sqrt{79}+7}{4} x=\frac{7-\sqrt{79}}{4}
Kua oti te whārite te whakatau.
16=x^{2}+\left(\frac{7-2x}{2}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16=x^{2}+\frac{\left(7-2x\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{7-2x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
16=\frac{x^{2}\times 2^{2}}{2^{2}}+\frac{\left(7-2x\right)^{2}}{2^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2} ki te \frac{2^{2}}{2^{2}}.
16=\frac{x^{2}\times 2^{2}+\left(7-2x\right)^{2}}{2^{2}}
Tā te mea he rite te tauraro o \frac{x^{2}\times 2^{2}}{2^{2}} me \frac{\left(7-2x\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
16=\frac{4x^{2}+49-28x+4x^{2}}{2^{2}}
Mahia ngā whakarea i roto o x^{2}\times 2^{2}+\left(7-2x\right)^{2}.
16=\frac{8x^{2}+49-28x}{2^{2}}
Whakakotahitia ngā kupu rite i 4x^{2}+49-28x+4x^{2}.
16=\frac{8x^{2}+49-28x}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
16=2x^{2}+\frac{49}{4}-7x
Whakawehea ia wā o 8x^{2}+49-28x ki te 4, kia riro ko 2x^{2}+\frac{49}{4}-7x.
2x^{2}+\frac{49}{4}-7x=16
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}-7x=16-\frac{49}{4}
Tangohia te \frac{49}{4} mai i ngā taha e rua.
2x^{2}-7x=\frac{15}{4}
Tangohia te \frac{49}{4} i te 16, ka \frac{15}{4}.
\frac{2x^{2}-7x}{2}=\frac{\frac{15}{4}}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{7}{2}x=\frac{\frac{15}{4}}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{7}{2}x=\frac{15}{8}
Whakawehe \frac{15}{4} ki te 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{15}{8}+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{15}{8}+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{79}{16}
Tāpiri \frac{15}{8} ki te \frac{49}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{4}\right)^{2}=\frac{79}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{79}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{\sqrt{79}}{4} x-\frac{7}{4}=-\frac{\sqrt{79}}{4}
Whakarūnātia.
x=\frac{\sqrt{79}+7}{4} x=\frac{7-\sqrt{79}}{4}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}