Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

20y^{2}+368y=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
20y^{2}+368y-4=0
Tangohia te 4 mai i ngā taha e rua.
y=\frac{-368±\sqrt{368^{2}-4\times 20\left(-4\right)}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, 368 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-368±\sqrt{135424-4\times 20\left(-4\right)}}{2\times 20}
Pūrua 368.
y=\frac{-368±\sqrt{135424-80\left(-4\right)}}{2\times 20}
Whakareatia -4 ki te 20.
y=\frac{-368±\sqrt{135424+320}}{2\times 20}
Whakareatia -80 ki te -4.
y=\frac{-368±\sqrt{135744}}{2\times 20}
Tāpiri 135424 ki te 320.
y=\frac{-368±8\sqrt{2121}}{2\times 20}
Tuhia te pūtakerua o te 135744.
y=\frac{-368±8\sqrt{2121}}{40}
Whakareatia 2 ki te 20.
y=\frac{8\sqrt{2121}-368}{40}
Nā, me whakaoti te whārite y=\frac{-368±8\sqrt{2121}}{40} ina he tāpiri te ±. Tāpiri -368 ki te 8\sqrt{2121}.
y=\frac{\sqrt{2121}-46}{5}
Whakawehe -368+8\sqrt{2121} ki te 40.
y=\frac{-8\sqrt{2121}-368}{40}
Nā, me whakaoti te whārite y=\frac{-368±8\sqrt{2121}}{40} ina he tango te ±. Tango 8\sqrt{2121} mai i -368.
y=\frac{-\sqrt{2121}-46}{5}
Whakawehe -368-8\sqrt{2121} ki te 40.
y=\frac{\sqrt{2121}-46}{5} y=\frac{-\sqrt{2121}-46}{5}
Kua oti te whārite te whakatau.
20y^{2}+368y=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{20y^{2}+368y}{20}=\frac{4}{20}
Whakawehea ngā taha e rua ki te 20.
y^{2}+\frac{368}{20}y=\frac{4}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
y^{2}+\frac{92}{5}y=\frac{4}{20}
Whakahekea te hautanga \frac{368}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y^{2}+\frac{92}{5}y=\frac{1}{5}
Whakahekea te hautanga \frac{4}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y^{2}+\frac{92}{5}y+\left(\frac{46}{5}\right)^{2}=\frac{1}{5}+\left(\frac{46}{5}\right)^{2}
Whakawehea te \frac{92}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{46}{5}. Nā, tāpiria te pūrua o te \frac{46}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{92}{5}y+\frac{2116}{25}=\frac{1}{5}+\frac{2116}{25}
Pūruatia \frac{46}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{92}{5}y+\frac{2116}{25}=\frac{2121}{25}
Tāpiri \frac{1}{5} ki te \frac{2116}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y+\frac{46}{5}\right)^{2}=\frac{2121}{25}
Tauwehea y^{2}+\frac{92}{5}y+\frac{2116}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{46}{5}\right)^{2}}=\sqrt{\frac{2121}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{46}{5}=\frac{\sqrt{2121}}{5} y+\frac{46}{5}=-\frac{\sqrt{2121}}{5}
Whakarūnātia.
y=\frac{\sqrt{2121}-46}{5} y=\frac{-\sqrt{2121}-46}{5}
Me tango \frac{46}{5} mai i ngā taha e rua o te whārite.