Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+6x-5=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+6x-5-4=0
Tangohia te 4 mai i ngā taha e rua.
-x^{2}+6x-9=0
Tangohia te 4 i te -5, ka -9.
a+b=6 ab=-\left(-9\right)=9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,9 3,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
1+9=10 3+3=6
Tātaihia te tapeke mō ia takirua.
a=3 b=3
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(-x^{2}+3x\right)+\left(3x-9\right)
Tuhia anō te -x^{2}+6x-9 hei \left(-x^{2}+3x\right)+\left(3x-9\right).
-x\left(x-3\right)+3\left(x-3\right)
Tauwehea te -x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-3\right)\left(-x+3\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x+3=0.
-x^{2}+6x-5=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+6x-5-4=0
Tangohia te 4 mai i ngā taha e rua.
-x^{2}+6x-9=0
Tangohia te 4 i te -5, ka -9.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 6 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+4\left(-9\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-6±\sqrt{36-36}}{2\left(-1\right)}
Whakareatia 4 ki te -9.
x=\frac{-6±\sqrt{0}}{2\left(-1\right)}
Tāpiri 36 ki te -36.
x=-\frac{6}{2\left(-1\right)}
Tuhia te pūtakerua o te 0.
x=-\frac{6}{-2}
Whakareatia 2 ki te -1.
x=3
Whakawehe -6 ki te -2.
-x^{2}+6x-5=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+6x=4+5
Me tāpiri te 5 ki ngā taha e rua.
-x^{2}+6x=9
Tāpirihia te 4 ki te 5, ka 9.
\frac{-x^{2}+6x}{-1}=\frac{9}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{6}{-1}x=\frac{9}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-6x=\frac{9}{-1}
Whakawehe 6 ki te -1.
x^{2}-6x=-9
Whakawehe 9 ki te -1.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-9+9
Pūrua -3.
x^{2}-6x+9=0
Tāpiri -9 ki te 9.
\left(x-3\right)^{2}=0
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=0 x-3=0
Whakarūnātia.
x=3 x=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=3
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}