Whakaoti mō b
b = \frac{32}{3} = 10\frac{2}{3} \approx 10.666666667
Tohaina
Kua tāruatia ki te papatopenga
4=\frac{-4\times 5}{3}+b
Tuhia te -\frac{4}{3}\times 5 hei hautanga kotahi.
4=\frac{-20}{3}+b
Whakareatia te -4 ki te 5, ka -20.
4=-\frac{20}{3}+b
Ka taea te hautanga \frac{-20}{3} te tuhi anō ko -\frac{20}{3} mā te tango i te tohu tōraro.
-\frac{20}{3}+b=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b=4+\frac{20}{3}
Me tāpiri te \frac{20}{3} ki ngā taha e rua.
b=\frac{12}{3}+\frac{20}{3}
Me tahuri te 4 ki te hautau \frac{12}{3}.
b=\frac{12+20}{3}
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{20}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
b=\frac{32}{3}
Tāpirihia te 12 ki te 20, ka 32.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}