Aromātai
\frac{8}{81}\approx 0.098765432
Tauwehe
\frac{2 ^ {3}}{3 ^ {4}} = 0.09876543209876543
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{4\sqrt{3}+\frac{1}{4}\sqrt{12}}}{\sqrt{27}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{\frac{4}{4\sqrt{3}+\frac{1}{4}\times 2\sqrt{3}}}{\sqrt{27}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{\frac{4}{4\sqrt{3}+\frac{2}{4}\sqrt{3}}}{\sqrt{27}}
Whakareatia te \frac{1}{4} ki te 2, ka \frac{2}{4}.
\frac{\frac{4}{4\sqrt{3}+\frac{1}{2}\sqrt{3}}}{\sqrt{27}}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{4}{\frac{9}{2}\sqrt{3}}}{\sqrt{27}}
Pahekotia te 4\sqrt{3} me \frac{1}{2}\sqrt{3}, ka \frac{9}{2}\sqrt{3}.
\frac{\frac{4\sqrt{3}}{\frac{9}{2}\left(\sqrt{3}\right)^{2}}}{\sqrt{27}}
Whakangāwaritia te tauraro o \frac{4}{\frac{9}{2}\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{4\sqrt{3}}{\frac{9}{2}\times 3}}{\sqrt{27}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{4\sqrt{3}}{\frac{9\times 3}{2}}}{\sqrt{27}}
Tuhia te \frac{9}{2}\times 3 hei hautanga kotahi.
\frac{\frac{4\sqrt{3}}{\frac{27}{2}}}{\sqrt{27}}
Whakareatia te 9 ki te 3, ka 27.
\frac{\frac{4\sqrt{3}\times 2}{27}}{\sqrt{27}}
Whakawehe 4\sqrt{3} ki te \frac{27}{2} mā te whakarea 4\sqrt{3} ki te tau huripoki o \frac{27}{2}.
\frac{\frac{8\sqrt{3}}{27}}{\sqrt{27}}
Whakareatia te 4 ki te 2, ka 8.
\frac{\frac{8\sqrt{3}}{27}}{3\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{8\sqrt{3}}{27\times 3\sqrt{3}}
Tuhia te \frac{\frac{8\sqrt{3}}{27}}{3\sqrt{3}} hei hautanga kotahi.
\frac{8}{3\times 27}
Me whakakore tahi te \sqrt{3} i te taurunga me te tauraro.
\frac{8}{81}
Whakareatia te 3 ki te 27, ka 81.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}