Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x, arā, te tauraro pātahi he tino iti rawa te kitea o 5,x.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
Whakareatia te \frac{5}{2} ki te 4, ka 10.
10x^{2}-4x=5\times 3
Whakareatia te 5 ki te -\frac{4}{5}, ka -4.
10x^{2}-4x=15
Whakareatia te 5 ki te 3, ka 15.
10x^{2}-4x-15=0
Tangohia te 15 mai i ngā taha e rua.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-15\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -4 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-15\right)}}{2\times 10}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-40\left(-15\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-4\right)±\sqrt{16+600}}{2\times 10}
Whakareatia -40 ki te -15.
x=\frac{-\left(-4\right)±\sqrt{616}}{2\times 10}
Tāpiri 16 ki te 600.
x=\frac{-\left(-4\right)±2\sqrt{154}}{2\times 10}
Tuhia te pūtakerua o te 616.
x=\frac{4±2\sqrt{154}}{2\times 10}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{154}}{20}
Whakareatia 2 ki te 10.
x=\frac{2\sqrt{154}+4}{20}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{154}}{20} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{154}.
x=\frac{\sqrt{154}}{10}+\frac{1}{5}
Whakawehe 4+2\sqrt{154} ki te 20.
x=\frac{4-2\sqrt{154}}{20}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{154}}{20} ina he tango te ±. Tango 2\sqrt{154} mai i 4.
x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
Whakawehe 4-2\sqrt{154} ki te 20.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
Kua oti te whārite te whakatau.
\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x, arā, te tauraro pātahi he tino iti rawa te kitea o 5,x.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
Whakareatia te \frac{5}{2} ki te 4, ka 10.
10x^{2}-4x=5\times 3
Whakareatia te 5 ki te -\frac{4}{5}, ka -4.
10x^{2}-4x=15
Whakareatia te 5 ki te 3, ka 15.
\frac{10x^{2}-4x}{10}=\frac{15}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{4}{10}\right)x=\frac{15}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-\frac{2}{5}x=\frac{15}{10}
Whakahekea te hautanga \frac{-4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{2}{5}x=\frac{3}{2}
Whakahekea te hautanga \frac{15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{5}\right)^{2}
Whakawehea te -\frac{2}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{5}. Nā, tāpiria te pūrua o te -\frac{1}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{3}{2}+\frac{1}{25}
Pūruatia -\frac{1}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{77}{50}
Tāpiri \frac{3}{2} ki te \frac{1}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{5}\right)^{2}=\frac{77}{50}
Tauwehea x^{2}-\frac{2}{5}x+\frac{1}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{77}{50}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{5}=\frac{\sqrt{154}}{10} x-\frac{1}{5}=-\frac{\sqrt{154}}{10}
Whakarūnātia.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
Me tāpiri \frac{1}{5} ki ngā taha e rua o te whārite.