Aromātai
\frac{296}{21}\approx 14.095238095
Tauwehe
\frac{2 ^ {3} \cdot 37}{3 \cdot 7} = 14\frac{2}{21} = 14.095238095238095
Tohaina
Kua tāruatia ki te papatopenga
4+16+\frac{-3}{21}\times 4+\frac{-4}{3!}\times 8
Whakareatia te 8 ki te 2, ka 16.
20+\frac{-3}{21}\times 4+\frac{-4}{3!}\times 8
Tāpirihia te 4 ki te 16, ka 20.
20-\frac{1}{7}\times 4+\frac{-4}{3!}\times 8
Whakahekea te hautanga \frac{-3}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
20+\frac{-4}{7}+\frac{-4}{3!}\times 8
Tuhia te -\frac{1}{7}\times 4 hei hautanga kotahi.
20-\frac{4}{7}+\frac{-4}{3!}\times 8
Ka taea te hautanga \frac{-4}{7} te tuhi anō ko -\frac{4}{7} mā te tango i te tohu tōraro.
\frac{140}{7}-\frac{4}{7}+\frac{-4}{3!}\times 8
Me tahuri te 20 ki te hautau \frac{140}{7}.
\frac{140-4}{7}+\frac{-4}{3!}\times 8
Tā te mea he rite te tauraro o \frac{140}{7} me \frac{4}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{136}{7}+\frac{-4}{3!}\times 8
Tangohia te 4 i te 140, ka 136.
\frac{136}{7}+\frac{-4}{6}\times 8
Ko te huarea o 3 ko 6.
\frac{136}{7}-\frac{2}{3}\times 8
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{136}{7}+\frac{-2\times 8}{3}
Tuhia te -\frac{2}{3}\times 8 hei hautanga kotahi.
\frac{136}{7}+\frac{-16}{3}
Whakareatia te -2 ki te 8, ka -16.
\frac{136}{7}-\frac{16}{3}
Ka taea te hautanga \frac{-16}{3} te tuhi anō ko -\frac{16}{3} mā te tango i te tohu tōraro.
\frac{408}{21}-\frac{112}{21}
Ko te maha noa iti rawa atu o 7 me 3 ko 21. Me tahuri \frac{136}{7} me \frac{16}{3} ki te hautau me te tautūnga 21.
\frac{408-112}{21}
Tā te mea he rite te tauraro o \frac{408}{21} me \frac{112}{21}, me tango rāua mā te tango i ō raua taurunga.
\frac{296}{21}
Tangohia te 112 i te 408, ka 296.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}