Whakaoti mō W
W<-\frac{14}{5}
Pātaitai
Algebra
4 + 10 < - W \times 5 =
Tohaina
Kua tāruatia ki te papatopenga
14<\left(-W\right)\times 5
Tāpirihia te 4 ki te 10, ka 14.
\left(-W\right)\times 5>14
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa. Ka huri tēnei i te aronga o te tohu.
-W>\frac{14}{5}
Whakawehea ngā taha e rua ki te 5. I te mea he tōrunga te 5, kāore e huri te ahunga koreōrite.
W<\frac{\frac{14}{5}}{-1}
Whakawehea ngā taha e rua ki te -1. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
W<\frac{14}{5\left(-1\right)}
Tuhia te \frac{\frac{14}{5}}{-1} hei hautanga kotahi.
W<\frac{14}{-5}
Whakareatia te 5 ki te -1, ka -5.
W<-\frac{14}{5}
Ka taea te hautanga \frac{14}{-5} te tuhi anō ko -\frac{14}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}