Whakaoti mō x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 0.3x=x
Me whakakore te 3 ki ngā taha e rua.
x^{2}\times 0.3=x
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 0.3-x=0
Tangohia te x mai i ngā taha e rua.
x\left(0.3x-1\right)=0
Tauwehea te x.
x=0 x=\frac{10}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{3x}{10}-1=0.
x\times 0.3x=x
Me whakakore te 3 ki ngā taha e rua.
x^{2}\times 0.3=x
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 0.3-x=0
Tangohia te x mai i ngā taha e rua.
0.3x^{2}-x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 0.3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.3 mō a, -1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times 0.3}
Tuhia te pūtakerua o te 1.
x=\frac{1±1}{2\times 0.3}
Ko te tauaro o -1 ko 1.
x=\frac{1±1}{0.6}
Whakareatia 2 ki te 0.3.
x=\frac{2}{0.6}
Nā, me whakaoti te whārite x=\frac{1±1}{0.6} ina he tāpiri te ±. Tāpiri 1 ki te 1.
x=\frac{10}{3}
Whakawehe 2 ki te 0.6 mā te whakarea 2 ki te tau huripoki o 0.6.
x=\frac{0}{0.6}
Nā, me whakaoti te whārite x=\frac{1±1}{0.6} ina he tango te ±. Tango 1 mai i 1.
x=0
Whakawehe 0 ki te 0.6 mā te whakarea 0 ki te tau huripoki o 0.6.
x=\frac{10}{3} x=0
Kua oti te whārite te whakatau.
x\times 0.3x=x
Me whakakore te 3 ki ngā taha e rua.
x^{2}\times 0.3=x
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 0.3-x=0
Tangohia te x mai i ngā taha e rua.
0.3x^{2}-x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{0.3x^{2}-x}{0.3}=\frac{0}{0.3}
Whakawehea ngā taha e rua o te whārite ki te 0.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{1}{0.3}\right)x=\frac{0}{0.3}
Mā te whakawehe ki te 0.3 ka wetekia te whakareanga ki te 0.3.
x^{2}-\frac{10}{3}x=\frac{0}{0.3}
Whakawehe -1 ki te 0.3 mā te whakarea -1 ki te tau huripoki o 0.3.
x^{2}-\frac{10}{3}x=0
Whakawehe 0 ki te 0.3 mā te whakarea 0 ki te tau huripoki o 0.3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\left(-\frac{5}{3}\right)^{2}
Whakawehea te -\frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{3}. Nā, tāpiria te pūrua o te -\frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{25}{9}
Pūruatia -\frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{5}{3}\right)^{2}=\frac{25}{9}
Tauwehea x^{2}-\frac{10}{3}x+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{3}=\frac{5}{3} x-\frac{5}{3}=-\frac{5}{3}
Whakarūnātia.
x=\frac{10}{3} x=0
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}