Whakaoti mō x
x=36
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-8\sqrt{x}=60
Me tāpiri te 60 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-8\sqrt{x}=60-3x
Me tango 3x mai i ngā taha e rua o te whārite.
\left(-8\sqrt{x}\right)^{2}=\left(60-3x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-8\right)^{2}\left(\sqrt{x}\right)^{2}=\left(60-3x\right)^{2}
Whakarohaina te \left(-8\sqrt{x}\right)^{2}.
64\left(\sqrt{x}\right)^{2}=\left(60-3x\right)^{2}
Tātaihia te -8 mā te pū o 2, kia riro ko 64.
64x=\left(60-3x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
64x=3600-360x+9x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(60-3x\right)^{2}.
64x+360x=3600+9x^{2}
Me tāpiri te 360x ki ngā taha e rua.
424x=3600+9x^{2}
Pahekotia te 64x me 360x, ka 424x.
424x-9x^{2}=3600
Tangohia te 9x^{2} mai i ngā taha e rua.
-9x^{2}+424x=3600
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-9x^{2}+424x-3600=3600-3600
Me tango 3600 mai i ngā taha e rua o te whārite.
-9x^{2}+424x-3600=0
Mā te tango i te 3600 i a ia ake anō ka toe ko te 0.
x=\frac{-424±\sqrt{424^{2}-4\left(-9\right)\left(-3600\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 424 mō b, me -3600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-424±\sqrt{179776-4\left(-9\right)\left(-3600\right)}}{2\left(-9\right)}
Pūrua 424.
x=\frac{-424±\sqrt{179776+36\left(-3600\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-424±\sqrt{179776-129600}}{2\left(-9\right)}
Whakareatia 36 ki te -3600.
x=\frac{-424±\sqrt{50176}}{2\left(-9\right)}
Tāpiri 179776 ki te -129600.
x=\frac{-424±224}{2\left(-9\right)}
Tuhia te pūtakerua o te 50176.
x=\frac{-424±224}{-18}
Whakareatia 2 ki te -9.
x=-\frac{200}{-18}
Nā, me whakaoti te whārite x=\frac{-424±224}{-18} ina he tāpiri te ±. Tāpiri -424 ki te 224.
x=\frac{100}{9}
Whakahekea te hautanga \frac{-200}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{648}{-18}
Nā, me whakaoti te whārite x=\frac{-424±224}{-18} ina he tango te ±. Tango 224 mai i -424.
x=36
Whakawehe -648 ki te -18.
x=\frac{100}{9} x=36
Kua oti te whārite te whakatau.
3\times \frac{100}{9}-8\sqrt{\frac{100}{9}}-60=0
Whakakapia te \frac{100}{9} mō te x i te whārite 3x-8\sqrt{x}-60=0.
-\frac{160}{3}=0
Whakarūnātia. Ko te uara x=\frac{100}{9} kāore e ngata ana ki te whārite.
3\times 36-8\sqrt{36}-60=0
Whakakapia te 36 mō te x i te whārite 3x-8\sqrt{x}-60=0.
0=0
Whakarūnātia. Ko te uara x=36 kua ngata te whārite.
x=36
Ko te whārite -8\sqrt{x}=60-3x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}