Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x_3 (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō x_3
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-30x_{3}x=5x_{6}x
Whakareatia te 5 ki te 6, ka 30.
3x-30x_{3}x-5x_{6}x=0
Tangohia te 5x_{6}x mai i ngā taha e rua.
\left(3-30x_{3}-5x_{6}\right)x=0
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(3-5x_{6}-30x_{3}\right)x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te 3-30x_{3}-5x_{6}.
3x-30x_{3}x=5x_{6}x
Whakareatia te 5 ki te 6, ka 30.
-30x_{3}x=5x_{6}x-3x
Tangohia te 3x mai i ngā taha e rua.
\left(-30x\right)x_{3}=5xx_{6}-3x
He hanga arowhānui tō te whārite.
\frac{\left(-30x\right)x_{3}}{-30x}=\frac{x\left(5x_{6}-3\right)}{-30x}
Whakawehea ngā taha e rua ki te -30x.
x_{3}=\frac{x\left(5x_{6}-3\right)}{-30x}
Mā te whakawehe ki te -30x ka wetekia te whakareanga ki te -30x.
x_{3}=-\frac{x_{6}}{6}+\frac{1}{10}
Whakawehe x\left(-3+5x_{6}\right) ki te -30x.
3x-30x_{3}x=5x_{6}x
Whakareatia te 5 ki te 6, ka 30.
3x-30x_{3}x-5x_{6}x=0
Tangohia te 5x_{6}x mai i ngā taha e rua.
\left(3-30x_{3}-5x_{6}\right)x=0
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(3-5x_{6}-30x_{3}\right)x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te 3-30x_{3}-5x_{6}.
3x-30x_{3}x=5x_{6}x
Whakareatia te 5 ki te 6, ka 30.
-30x_{3}x=5x_{6}x-3x
Tangohia te 3x mai i ngā taha e rua.
\left(-30x\right)x_{3}=5xx_{6}-3x
He hanga arowhānui tō te whārite.
\frac{\left(-30x\right)x_{3}}{-30x}=\frac{x\left(5x_{6}-3\right)}{-30x}
Whakawehea ngā taha e rua ki te -30x.
x_{3}=\frac{x\left(5x_{6}-3\right)}{-30x}
Mā te whakawehe ki te -30x ka wetekia te whakareanga ki te -30x.
x_{3}=-\frac{x_{6}}{6}+\frac{1}{10}
Whakawehe x\left(-3+5x_{6}\right) ki te -30x.