Whakaoti mō x (complex solution)
x=\frac{-\sqrt{51}i+3}{10}\approx 0.3-0.714142843i
x=\frac{3+\sqrt{51}i}{10}\approx 0.3+0.714142843i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x^{2}+3x=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-5x^{2}+3x-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
-5x^{2}+3x-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 3 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+20\left(-3\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-3±\sqrt{9-60}}{2\left(-5\right)}
Whakareatia 20 ki te -3.
x=\frac{-3±\sqrt{-51}}{2\left(-5\right)}
Tāpiri 9 ki te -60.
x=\frac{-3±\sqrt{51}i}{2\left(-5\right)}
Tuhia te pūtakerua o te -51.
x=\frac{-3±\sqrt{51}i}{-10}
Whakareatia 2 ki te -5.
x=\frac{-3+\sqrt{51}i}{-10}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{51}i}{-10} ina he tāpiri te ±. Tāpiri -3 ki te i\sqrt{51}.
x=\frac{-\sqrt{51}i+3}{10}
Whakawehe -3+i\sqrt{51} ki te -10.
x=\frac{-\sqrt{51}i-3}{-10}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{51}i}{-10} ina he tango te ±. Tango i\sqrt{51} mai i -3.
x=\frac{3+\sqrt{51}i}{10}
Whakawehe -3-i\sqrt{51} ki te -10.
x=\frac{-\sqrt{51}i+3}{10} x=\frac{3+\sqrt{51}i}{10}
Kua oti te whārite te whakatau.
-5x^{2}+3x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5x^{2}+3x}{-5}=\frac{3}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\frac{3}{-5}x=\frac{3}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}-\frac{3}{5}x=\frac{3}{-5}
Whakawehe 3 ki te -5.
x^{2}-\frac{3}{5}x=-\frac{3}{5}
Whakawehe 3 ki te -5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{3}{10}\right)^{2}
Whakawehea te -\frac{3}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{10}. Nā, tāpiria te pūrua o te -\frac{3}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{3}{5}+\frac{9}{100}
Pūruatia -\frac{3}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{51}{100}
Tāpiri -\frac{3}{5} ki te \frac{9}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{10}\right)^{2}=-\frac{51}{100}
Tauwehea te x^{2}-\frac{3}{5}x+\frac{9}{100}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{51}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{10}=\frac{\sqrt{51}i}{10} x-\frac{3}{10}=-\frac{\sqrt{51}i}{10}
Whakarūnātia.
x=\frac{3+\sqrt{51}i}{10} x=\frac{-\sqrt{51}i+3}{10}
Me tāpiri \frac{3}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}