Whakaoti mō x
x=2
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-15x+16=-x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-5.
3x^{2}-15x+16+x=0
Me tāpiri te x ki ngā taha e rua.
3x^{2}-14x+16=0
Pahekotia te -15x me x, ka -14x.
a+b=-14 ab=3\times 16=48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx+16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Tātaihia te tapeke mō ia takirua.
a=-8 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(3x^{2}-8x\right)+\left(-6x+16\right)
Tuhia anō te 3x^{2}-14x+16 hei \left(3x^{2}-8x\right)+\left(-6x+16\right).
x\left(3x-8\right)-2\left(3x-8\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(3x-8\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi 3x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{8}{3} x=2
Hei kimi otinga whārite, me whakaoti te 3x-8=0 me te x-2=0.
3x^{2}-15x+16=-x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-5.
3x^{2}-15x+16+x=0
Me tāpiri te x ki ngā taha e rua.
3x^{2}-14x+16=0
Pahekotia te -15x me x, ka -14x.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\times 16}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -14 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 3\times 16}}{2\times 3}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-12\times 16}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 3}
Whakareatia -12 ki te 16.
x=\frac{-\left(-14\right)±\sqrt{4}}{2\times 3}
Tāpiri 196 ki te -192.
x=\frac{-\left(-14\right)±2}{2\times 3}
Tuhia te pūtakerua o te 4.
x=\frac{14±2}{2\times 3}
Ko te tauaro o -14 ko 14.
x=\frac{14±2}{6}
Whakareatia 2 ki te 3.
x=\frac{16}{6}
Nā, me whakaoti te whārite x=\frac{14±2}{6} ina he tāpiri te ±. Tāpiri 14 ki te 2.
x=\frac{8}{3}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{14±2}{6} ina he tango te ±. Tango 2 mai i 14.
x=2
Whakawehe 12 ki te 6.
x=\frac{8}{3} x=2
Kua oti te whārite te whakatau.
3x^{2}-15x+16=-x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-5.
3x^{2}-15x+16+x=0
Me tāpiri te x ki ngā taha e rua.
3x^{2}-14x+16=0
Pahekotia te -15x me x, ka -14x.
3x^{2}-14x=-16
Tangohia te 16 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3x^{2}-14x}{3}=-\frac{16}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{14}{3}x=-\frac{16}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-\frac{16}{3}+\left(-\frac{7}{3}\right)^{2}
Whakawehea te -\frac{14}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{3}. Nā, tāpiria te pūrua o te -\frac{7}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-\frac{16}{3}+\frac{49}{9}
Pūruatia -\frac{7}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{1}{9}
Tāpiri -\frac{16}{3} ki te \frac{49}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{3}\right)^{2}=\frac{1}{9}
Tauwehea x^{2}-\frac{14}{3}x+\frac{49}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{3}=\frac{1}{3} x-\frac{7}{3}=-\frac{1}{3}
Whakarūnātia.
x=\frac{8}{3} x=2
Me tāpiri \frac{7}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}