Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-3x=x-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
3x^{2}-3x-x=-1
Tangohia te x mai i ngā taha e rua.
3x^{2}-4x=-1
Pahekotia te -3x me -x, ka -4x.
3x^{2}-4x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
Tāpiri 16 ki te -12.
x=\frac{-\left(-4\right)±2}{2\times 3}
Tuhia te pūtakerua o te 4.
x=\frac{4±2}{2\times 3}
Ko te tauaro o -4 ko 4.
x=\frac{4±2}{6}
Whakareatia 2 ki te 3.
x=\frac{6}{6}
Nā, me whakaoti te whārite x=\frac{4±2}{6} ina he tāpiri te ±. Tāpiri 4 ki te 2.
x=1
Whakawehe 6 ki te 6.
x=\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{4±2}{6} ina he tango te ±. Tango 2 mai i 4.
x=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=\frac{1}{3}
Kua oti te whārite te whakatau.
3x^{2}-3x=x-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
3x^{2}-3x-x=-1
Tangohia te x mai i ngā taha e rua.
3x^{2}-4x=-1
Pahekotia te -3x me -x, ka -4x.
\frac{3x^{2}-4x}{3}=-\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Tāpiri -\frac{1}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
Tauwehea x^{2}-\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
Whakarūnātia.
x=1 x=\frac{1}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.