Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+3x-x=2\left(x+54\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=2\left(x+54\right)
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=2x+108
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+54.
3x^{2}+2x-2x=108
Tangohia te 2x mai i ngā taha e rua.
3x^{2}=108
Pahekotia te 2x me -2x, ka 0.
x^{2}=\frac{108}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=36
Whakawehea te 108 ki te 3, kia riro ko 36.
x=6 x=-6
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}+3x-x=2\left(x+54\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=2\left(x+54\right)
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=2x+108
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+54.
3x^{2}+2x-2x=108
Tangohia te 2x mai i ngā taha e rua.
3x^{2}=108
Pahekotia te 2x me -2x, ka 0.
3x^{2}-108=0
Tangohia te 108 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-108\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-108\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-108\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{1296}}{2\times 3}
Whakareatia -12 ki te -108.
x=\frac{0±36}{2\times 3}
Tuhia te pūtakerua o te 1296.
x=\frac{0±36}{6}
Whakareatia 2 ki te 3.
x=6
Nā, me whakaoti te whārite x=\frac{0±36}{6} ina he tāpiri te ±. Whakawehe 36 ki te 6.
x=-6
Nā, me whakaoti te whārite x=\frac{0±36}{6} ina he tango te ±. Whakawehe -36 ki te 6.
x=6 x=-6
Kua oti te whārite te whakatau.