Whakaoti mō x
x=-6
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+3x-x=2\left(x+54\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=2\left(x+54\right)
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=2x+108
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+54.
3x^{2}+2x-2x=108
Tangohia te 2x mai i ngā taha e rua.
3x^{2}=108
Pahekotia te 2x me -2x, ka 0.
x^{2}=\frac{108}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=36
Whakawehea te 108 ki te 3, kia riro ko 36.
x=6 x=-6
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}+3x-x=2\left(x+54\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=2\left(x+54\right)
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=2x+108
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+54.
3x^{2}+2x-2x=108
Tangohia te 2x mai i ngā taha e rua.
3x^{2}=108
Pahekotia te 2x me -2x, ka 0.
3x^{2}-108=0
Tangohia te 108 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-108\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-108\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-108\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{1296}}{2\times 3}
Whakareatia -12 ki te -108.
x=\frac{0±36}{2\times 3}
Tuhia te pūtakerua o te 1296.
x=\frac{0±36}{6}
Whakareatia 2 ki te 3.
x=6
Nā, me whakaoti te whārite x=\frac{0±36}{6} ina he tāpiri te ±. Whakawehe 36 ki te 6.
x=-6
Nā, me whakaoti te whārite x=\frac{0±36}{6} ina he tango te ±. Whakawehe -36 ki te 6.
x=6 x=-6
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}