Whakaoti mō x
x=5
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
33x-6x^{2}=15
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 11-2x.
33x-6x^{2}-15=0
Tangohia te 15 mai i ngā taha e rua.
-6x^{2}+33x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-33±\sqrt{33^{2}-4\left(-6\right)\left(-15\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 33 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-6\right)\left(-15\right)}}{2\left(-6\right)}
Pūrua 33.
x=\frac{-33±\sqrt{1089+24\left(-15\right)}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-33±\sqrt{1089-360}}{2\left(-6\right)}
Whakareatia 24 ki te -15.
x=\frac{-33±\sqrt{729}}{2\left(-6\right)}
Tāpiri 1089 ki te -360.
x=\frac{-33±27}{2\left(-6\right)}
Tuhia te pūtakerua o te 729.
x=\frac{-33±27}{-12}
Whakareatia 2 ki te -6.
x=-\frac{6}{-12}
Nā, me whakaoti te whārite x=\frac{-33±27}{-12} ina he tāpiri te ±. Tāpiri -33 ki te 27.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-6}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{60}{-12}
Nā, me whakaoti te whārite x=\frac{-33±27}{-12} ina he tango te ±. Tango 27 mai i -33.
x=5
Whakawehe -60 ki te -12.
x=\frac{1}{2} x=5
Kua oti te whārite te whakatau.
33x-6x^{2}=15
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 11-2x.
-6x^{2}+33x=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-6x^{2}+33x}{-6}=\frac{15}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\frac{33}{-6}x=\frac{15}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}-\frac{11}{2}x=\frac{15}{-6}
Whakahekea te hautanga \frac{33}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{11}{2}x=-\frac{5}{2}
Whakahekea te hautanga \frac{15}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{11}{4}\right)^{2}
Whakawehea te -\frac{11}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{4}. Nā, tāpiria te pūrua o te -\frac{11}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{5}{2}+\frac{121}{16}
Pūruatia -\frac{11}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{81}{16}
Tāpiri -\frac{5}{2} ki te \frac{121}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{4}\right)^{2}=\frac{81}{16}
Tauwehea x^{2}-\frac{11}{2}x+\frac{121}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{4}=\frac{9}{4} x-\frac{11}{4}=-\frac{9}{4}
Whakarūnātia.
x=5 x=\frac{1}{2}
Me tāpiri \frac{11}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}